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We model the subnebulae of Jupiter and Saturn wherein

satellite accretion took place. We expect a giant planet sub-

nebula to be composed of an optically thick (given gaseous

opacity) inner region inside of the planet's centrifugal ra-
s 22RsJ 15Rj for Jupiter and rc -_dins (located at rc "-_

for Saturn), and an optically thin, extended outer disk out

to a fraction of the planet's Roche lobe, which we choose

to be _ /_och_/5 (located at _ 150Rj near the inner ir-

regular satellites for Jupiter, and _ 200Rs near Phoebe

for Saturn). This places Titan and Ganymede in the inner
disk, Calllsto and lapetus in the outer disk, and Hyperion

in the transition region. The inner disk is the leftover of

the gas accreted by the protoplanet. The outer disk re-
sults from the solar torque on nebula gas flowing into the

protoplanet during the time of giant planet gap opening

0Bryden et. al. 1999). For the sake of specificity, we use
a cosmic mixture "minimum mass" model to constrain the

gas densities of the inner disks of Jupiter and Saturn (and

also Uranus). For the total mass of the outer disk we use

the simple scaling Mai_k "_ Mp 7"gap/r,_, where Mp is the

mass of the giant planet, 7-9ap is the gap opening timescale,

and _-acc is the giant planet accretion time. This gives a
total outer disk mass of _ 100Moam_to for Jupiter and

possibly _ 200Ml_,_t_ for Saturn (which contain enough
condensables to form Callisto and Iapetus respectively).

Our model has Ganymede at a subnebula temperature of
,_ 250 K and Titan at ,_ 100 K. The outer disks of Jupiter

and Saturn have constant temperatures of 130 K and 90 K

respectively.

This model has Callisto forming in a timescale -,_ 106

years, Iapetus in _ 10 _ - 10 _ years, Ganymede in 103 -

104 years, and Titan in 104 - 105 years. Callisto takes much

longer to form than Ganymede because it draws materi-

als from the extended, low density portion of the disk; its

accretion timescale is set by the inward drift times of satel-
litesimais with sizes 300- 500 km from distances _ 100Rj.

This may be consistent with a partially differentiated Cal-
listo with a ,,_ 300 km clean ice outer shell overlying a

mixed ice and rock-metal interior as suggested by Ander-

son et al. (2001). It is also possible that particulate matter

coupled to the high specific angular momentum gas flowing

through the gap after giant planet gap-opening lengthens
the timescale for Callisto's formation. Furthermore, this

model has Hyperion forming just outside Saturn's centrifu-

gal radius, captured into resonance by proto-Titan in the

presence of a strong gas density gradient as proposed by

Lee and Peale (2000). While Titan may have taken signif-

icantly longer to form than Ganymede, it still formed fast

enough that we would expect it to be fully differentiated. In

this sense, it is more like Ganymede than like Callisto (Sat-

urn's analog of Callisto, we expect, is lapetus). An alterna-

tive starved disk model whose satellite accretion timescale

for all the regular satellites is set by the feeding of planetesi-
reals and/or gas from the planet's Roche-lobe implies a long

accretion timescale for Titan with small quantities of NHs

present, leading to a partially differentiated (Callisto-like)
Titan. The Cassini mission is likely to resolve this issue

conclusively. We briefly discuss the retention of elements
more volatile than H20 as well as other issues that may

help to test our model.

1 Introduction

The large satellites of Jupiter and Saturn (the Galilean satellites

plus Titan) generally have low inclinations and eccentricities.

Perhaps most striking is the progression of satellite density

in the Galilean system (,p, = 3.5 gcm -3 for Io, p, = 3.0 g

cm -3 for Europa, p_ = 1.94 g cm -3 for Ganymede, and p_ =

1.85 g cm -a for Callisto). Furthermore, some characteristics

of the regular satellite systems of the giant planets are quite

similar (Pollack et al. 1991), in particular the ratios between

the satellite systems and the parent bodies of mass, angular

momentum, and size. These similarities suggest a common

origin in an accretion disk present about the protoplanets at a

late stage of their formation. These properties taken together

with the tantalizing ratio of satellite to primary of M_/Mp

10 -4 (not too dissimilar from the ratio of giant planet to Sun)

lead one to think of the Galilean satellite system as a kind of

scaled-down solar system with the satellites accreting from a

circumplanetary disk left over from the process of planetary

formation.

An issue we wish to focus on is how to view Titan (p, =

1.88 g cm -3) in light of the Galilean satellite system. While

Titan is located midway between Ganymede and Callisto in

terms of planetary radii, scaled by the Hill radius of the primary

the association is much closer to Ganymede. On the other hand,

if the key quantity is the speed of incoming projectiles from

the Roche-lobe then Titan can be thought of more as a Callisto

with a thick atmosphere. Whatever the case, the similarities in

distances, masses and densities of all three satellites lead us to

attempt a detailed comparison between them.

As intriguing as the similarities are the differences be-

tween these three satellites. Ganymede is differentiated, while

Callisto is only partly differentiated (Anderson et al. 1998)

and shows no evidence of tectonic activity. On the other hand,

the association of craters with the presence of CO2 in Callisto

but not Ganymede (Hibbits et al. 2000) as well as the break-

down of craters presumably due to the sublimation of CO2

in Callisto but not Ganymede (Moore et al. 1999), which is

consistent with the presence of a CO2 atmosphere in Callisto

(Carlson 1999), seems to require that Callisto be assembled
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withandretainoxidizedicesmorevolatilethanH20.Inthe
caseofTitan,it isprobablythepresenceofmethaneinthe
atmospherethathasreceivedthemostattention(Lunineet al.

1989; Prinn and Fegley 1989). Prinn and Fegley (1981) estab-

lished that methane and ammonia were the dominant carbon-

bearing and nitrogen-bearing molecules in the hypothesized

Saturnian subnebula, provided that this disk was of solar com-

position, gaseous, optically thick and had access to regions

close to Saturn with high (,-, 800 K) quench temperature and

1 bar pressure. Such a disk is consistent with the subnebula

model of Lunine and Stevenson (1982) or the spin-out scenario

of Pollack et al. (1991).
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Figure 1: Comparison of the Jovian, Saturnian, and Ura-

nian dynamical systems with the distance scale in terms of

the respective planet's Hill radius (R J ,-_ ?50R j, R/_ ,,_

ll00Rs, RUH _ 2740Ru). Planetary rings are denoted by

solid lines, and are labeled when possible. The centrifugal

radius is denoted by a bold dashed line. Dotted lines cor-

respond to positions of interest. The first located at the

distance of Rhea for Saturn, corresponds to the innermost

portion of the disk. The second corresponds to the outer

edge of the disk (_, l_roche/5 ) in our models.

Another challenging problem is the result that the Galileo

mission moment of inertia data are consistent with a fully

differentiated Ganymede, but only a partially differentiated

Callisto (Anderson et al. 1998). More recently, Anderson et

al. (2001) have investigated two and three layer models for

Callisto's internal structure assuming hydrostatic equilibrium.

For the two layer models these authors find two limiting cases:

a relatively pure ice shell about _ 300 km overlying a mixed

ice and rock-metal interior, and a thick > 1000 km ice and

rock-metal outer shell overlying a rock-metal core. Since it is

difficult to reconcile a metallic core with a partially differenti-

ated state the former solution appears more likely. Given that

accreting bodies allocate a fraction of their energy as surface

heat (Schubert et aL 1981; Coradini et al. 1982), fast satellite

accretion would melt the water ice and lead to rock separation

and runaway differentiation (Friedson and Stevenson 1983).

Since a differentiated depth of ,,, 300 km may trigger this

mechanism, Anderson et al. (2001) suggest that Callisto may

be in the process of differentiating, only it is doing so slowly.

Previous attempts to explain an undifferentiated Callisto have

relied on fine tuning parameters (Schubert et al. 1981; Cora-

dini et al. 1982; Lunine and Stevenson 1982). While it is

possible that non-hydrostatic effects in Callisto's core could

be large enough to allow for complete differentiation of Cal-

listo and sufficiently small in Ganymede to avoid detection, we

regard this possibility as unlikely. Instead, we favor a model

that makes Callisto slowly.

Other issues also seem difficult to explain. For instance,

one might expect the outermost Galilean satellite to have sig-

nificantly less angular momentum than the preceding satellite.

If we insist in forming all the Galilean satellites out of a more or

less uniform accretion disk, the size of Callisto would seem to

require a disk with a very sharp outer cut-off outside Callisto.

It seems unlikely that the satellite disk would have enough

surface density to make a satellite the size of Callisto at 26R j,

but form no smaller objects further out. Furthermore, the sep-

aration between Ganymede and Callisto (_ 10R j) is so large

that one is led to wonder why there are no satellites in between

at ,-, 20Rj. One can imagine that the inner three satellites

evolved inward from their original positions, but then Callisto

should also have evolved (evolution outward due to tidal ef-

fects does not help with this issue). On the other hand, one

can always argue serendipity, but the Galilean satellite system

is sufficiently regular that we reserve this explanation as a last
resort.

A similar point can be made concerning Titan and Iapetus.

If we form the satellites out of a continuous, smoothly varying

accretion disk, it would seem difficult to explain why there are

no large satellites between Titan at 2ORs and Iapetus at 6ORs

(Hyperion does not have enough mass to affect this argument).

Finding an explanation for the observations concerning the

bulk properties of the regular satellites of the giant planets is

made even more difficult when one considers that the Saturnian

satellite system is so different from the Jovian satellite system.

Perhaps the most perverse difference between the two systems

is the fact that whereas the Galilean satellites get rockier closer

to the planet, the inner satellites of Saturn appear to be made

mostly of ice! Even so, we attempt a combined model for both

Jupiter and Saturn (as well as Uranus).

If we take the satellite systems of Jupiter and Saturn and
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addtheamountofgasnecessarytocreateacosmiccomposi-
tionmixturetheresultingdiskshaveatotalangularmomen-
tumcomparabletothespinangularmomentumoftheparent
planet(Stevensonet al. 1986) This is consistent with the

spin-out scenario (Korycansky et al. 1991) which suggests

that giant protoplanets shed gas as they contracted. The issue

arises whether one would expect the circumplanetary disk to

exhibit a solar mixture of elemental abundances of water and

ice beating materials. While one can think of several pro-

cesses which modified the abundances of rock and ice from

their solar abundances. Yet, the fact that the similarly sized

Ganymede, Callisto and Titan all deviate from solar mixture

by the same proportion (,-, 60 % rock, _ 40 % ice by mass;

though Triton, Pluto and Charon all have a considerably higher

silicate fraction) seems to indicate that one should be guided

by solar mixtures and investigate mechanisms for deviation

from them, such as size-dependent water vaporization on one

end, and water enrichment by composition selective mecha-

hisms on the other. If so, one might calculate models with

"minimum mass" by augmenting the mass of the satellites by

some factor (typically _ 100), corresponding to the mass ratio

of gas to rock/ice in the solar nebula. This factor might be

decreased somewhat in view of the heavy-element enrichment

of the giant planets, or increased in view of the possible loss of

some of the accreting materials as a result of the specifics of

the process used to make the planet and satellites. Given the

uncertainty inherent in these arguments, and the lack of ob-

servational evidence of wide systematic departures from solar

mixtures, it is reasonable to continue to use solar proportions

as a guide. Furthermore, we regard the order of magnitude

agreement between protoplanetary disk models (Lunine and

Stevenson 1982) and the "minimum mass" model as sugges-

tive that one should indeed expect close to solar mixtures in

the circumplanetary disk.

In order to arrive at a specific model for the formation of

regular satellites in a gaseous medium we need to characterize

the subnebular viscosity. It has been suggested that because

of the stabilizing influence of a positive radial gradient in spe-

cific angular momentum, turbulence in a Keplerian disk is not

self-sustaining unless a source of "stirring" is found (Ryu and

Goodman 1992; Balbus, Hawley and Stone 1996). As a result,

one needs to identify a specific mechanism that can maintain

turbulence in the dense, high orbital frequency subnebula. One

such suggestion is that convection drives turbulence (Lin and

Papaloizou 1980; Ruden and Lin 1986); however, eventually

particle growth stops convection by diminishing the Rosse-

land mean opacity and weakening its temperature dependence

(Weidenschilling and Cuzzi 1993). Given the fast dynamical

timescale and the high particle density of the subnebula disk,

coagulation and settling times for sticky particles is likely to

take place on a timescale considerably faster than disk evolu-

tion. Thus, convection probably cannot drive disk evolution.

Another possibility is that turbulence is driven by a magneto-

hydrodynamic (MHD) instability (Balbus and Hawley 1991).

But this is also unlikely to apply (Gammie 1996) in the dense,

dusty and relatively cool subnebula disk. Alternately, there

are a variety of ways that accretion itself, or the gravitational

energy released by it, can provide the source of free energy that

can drive turbulence. It has been pointed out (but not quanti-

tatively explored) that a turbulent shear layer where the angu-

lar momentum of the infalling gas is adjusted to the angular

momentum of the Keplerian disk flow exists below an accre-

tion shock and may provide a localized viscosity (Cassen and

Moosman 1981; Cassen and Summers 1983). More recently

it has been shown that a bump in the temperature profile of the

disk, as may result from accretion, leads to Rossby waves and

localized turbulence (Lovelace et al. 1999; Li et a12000). Sim-

ilarly but more generally, Klahr and Bodenheimer (in press)

study a global baroclinic instability as a source of turbulence

and angular momentum transport in Keplerian accretion disks

characterized by a negative entropy gradient. Such a model

leads to turbulence that is a function of position and time.

In order to create a coherent scenario of satellite formation,

the source of the solids that go into the satellite systems must

be considered. It is possible that the concentration of rock/ice

to gas in the subnebula depends on the ability of the protoplanet

to disturb the orbits of planetesimals situated within a few AU

of its orbit into ones that crossed its orbit (Gladman et a11990).

One would expect that within a timescale much shorter than

the lifetime of the solar system virtually all the planetesimals

located in the outer solar system would have their orbits per-

turbed into giant planet crossing orbits. What happens to such

a planetesimal depends on the size of the planet at the time of

crossing. If the giant planet's envelope filled a fair fraction of

its Hill radius (as it probably did during all or most of the later

stages of accretion, unless significant amounts of gas accreted

through the gap) then planetesimals < 100 km (Zahnle, private

communication) may break up high in the contracting envelope

of the giant planet, and be left behind with the gas disk. Late

arriving planetesimals might have been scattered to further out

regions of the solar system with some sent to the Oort cloud and

some lost altogether. Our model relies on early arriving plan-

etesimals that breakup in the extended Jovian and Saturnian

envelopes to provide the bulk of the material that will eventu-

ally make the satellite systems. This model is consistent with

a model that forms the irregular satellites of Jupiter at a time

when the proto-planetary envelope was collapsing rapidly and

extended several hundred planetary radii (Pollack et al. 1979).

The idea is for the envelope to capture objects into planetary

orbits yet not drag them into the planet. A similar model might

apply to the capture of Phoebe in orbit around Saturn. In this

model late arriving interplanetary debris plays a role in that

it can threaten the survival of regular satellites close to their

primary. Thus, the large disparity in masses between Titan

and all other moons of Saturn may be the result of breakup

of satellites by high-velocity impacts (Lissauer 1995). In this

model, it is also possible that the outermost large, regular moon

in the Jovian and Saturnian systems, which is located outside

the centrifugal radius, derives a fraction of its mass from par-

ticulate matter coupled to the high specific angular momentum

gas flowing through the gap after gap-opening, once the giant

planet has accreted most of its mass. By contrast, a starved

disk model (Stevenson 2001) relies on the late amving plan-

etesimals and/or flow through the gap to form a disk around
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the planet out of which all the regular satellites will eventually

accrete. One must keep in mind, however, that most planetes-

imals were probably scattered or the giant planets would have

ended up with too much high-Z mass (Podolak et al. 1993),

and that most of the mass in the disk at late times is in the

form of planetesimals (Weidenschilling 1997). Furthermore,

gas arriving at late times may have sufficient specific angular

momentum to place it in orbit outside of the centrifugal radius

(whereas most of the mass in the satellite systems of the giant

planets is inside of this radius).

we characterize the subnebulae of giant planets, especially that

of Jupiter. In section 4 we discuss the accretion of the Galilean

satellites, reserving discussion of Callisto for Section 5. In

section 6 we turn to Saturn's satellite system. In section 7 we

discuss the satellite system of Uranus. In section 8 we make

some comments on an alternative satellite accretion model

which leads to a long accretion timescale for every satellite.

In section 9 we present our conclusions and discussion. In

Mosqueira and Estrada (2002, submitted to Icarus, hereafter

Paper II) we turn to the migration and survival of full-sized

satellites.

TABLE I

Satellite Data a

Distance Radius Density Mass

(Rp) (km) (g cm -3) (1026 g)

Jupiter 1.0 71492 1.326 18980

1o 5.905 1,821 3.53 0.894

Europa 9.937 1,565 2.97 0.480

Ganymede 14.99 2,634 1.94 1.4823

Callisto 26.37 2,403 1.85 1.0776

(Leda) 155.2 5 ? ?

(Himalia) 160.6 85 ? ?

(Lysithea) 163.9 12 ? ?

(Elara) 164.2 40 ? ?

Saturn 1.0 60330 0.687 5684.6

Mimas 3.075 199 1.12 0.00037

Enceladus 3.945 249 1.00 0.00065

Tethys 4.884 529 0.98 0.0061

Dione 6.256 560 1.49 0.011

Rhea 8.736 764 1.24 0.023

Titan 20.25 2,575 1.88 1.3457

lapetus 59.03 720 1.0 0.016

(s/2000s5) b 187.3 10 ? ?

(S/2000 $6) b 189 16 ? ?

(Phoebe) 214.5 115x105 ? ?

Uranus 1.0 25559 1.318 868.32

Puck 3.36 77 ? ?

Miranda 5.08 240x233 1.20 0.000659

Ariel 7.48 581x578 1.67 0.0135

Umbriel 10.4 585 1.4 0.0117

Titania 17.05 790 1.71 0.0353

Oberon 22.8 760 1.63 0.0301

(Caliban) 280.5 30 ? ?

(Stephano) b 309 10 ? ?

(Syeorax) 477.9 60 ? ?

Neptune 1.0 24766 1.638 1024.3

Proteus 4.75 218x201 ? ?

(q¥iton) 14.32 1,353 2.05 0.215

Nereid 222.6 170 ? ?

a From TheNewSolarSystem, J. K. Beatty, Ed. (1999)

b
P. Nicholson, private communication

In section 2 we organize the satellite systems of the giant

planets according to the Hill radius of the primary. In section 3

2 Regular Satellites of Giant Planets

We start with a brief comparative discussion of the satellite

systems of the giant planets. Here we advance arguments

discussed in the remainder of the paper so as to organize the

systems under consideration, and facilitate the ensuing discus-
sion.

Proper comparison of the satellites requires we establish

a guiding principle to order the satellite systems. We believe

satellite positions should be compared in terms of the Hill

radius Rn = a(Mp/3Mo) 1/3 of the primary (and the con-

comitant centrifugal radius rc ,_ Rn/48). In Figure 1, we

plot the locations of the regular satellites (solid circles) and the

innermost irregular satellites (open circles) in units of the Hill

radius of the giant planet. The bold dashed line describes the

position of the centrifugal radius. From this plot it is imme-

diately apparent that the irregulars (presumed to be captured

objects) for the three inner giant planets are far from the loca-

tion of the centrifugal radius. We expect that this observation

means that the gas disk which gave rise to the regular satellite

systems extended well outside this radius (,-, RH/5 for Jupiter

and Saturn). Jupiter and Saturn have regular satellites which

are far outside the centrifugal radius, with Saturn's Iapetus be-

ing much further out than Jupiter's Callisto. These two planets

also have satellites just inside (Saturn also just outside) the

centrifugal radius. By contrast, one has to go much deeper

in (--, Rn/lO0) to find any regular Uranian satellites. For

this planet we expect that the location of irregulars closer to

centrifugal radius is related to the absence of a regular satellite

outside of this radius.

We add the satellite system of Neptune for the sake of

completeness; however, Goldreich et al. (1989) showed that

retrograde Triton is likely to be a captured object. Since these

authors estimate a collision probability near one between

5Rjv and the centrifugal radius ,-, 100RN, Triton's capture

would have broken up or scattered any pre-existing satellites

in this region. Nereid's high eccentricity and inclination, and

large semi-major axis are best understood in terms of this

process. Hence we will not discuss this system any further.

We provide data on both regular and irregular satellites for all

four giant planets in Table I.
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3 The Giant Planet Subnebula

The "minimum" mass subnebula we use here is one of solar

nebula composition that provides just enough mass to form the

observed satellite systems with the observed rock/ice mass ra-

tio. Given Jupiter's relative enrichment in heavy elements with

respect to the solar nebula, the "minimum" mass subnebula is

not a firm lower bound. On the other hand, inefficiencies in

the satellite formation process and depletion of solids due to

planetesimal formation mean that it is not a firm upper bound

either. Still it remains a useful reference and we have chosen

it for the sake of specificity. As we will see, it is possible

that a minimum mass subnebula (unlike the minimum mass

solar nebula) does in fact apply. If anything, we expect that

the concentration of solids will turn out to be larger than solar

proportion. Here and in paper 1I we will be guided by so-

lar proportion, but we will also consider solid enhancement

factors of 3 - 4 in rough agreement with giant planet high-Z

enhancement.

Gas flowing into the Hill sphere forms a high optical depth

gas disk around the protoplanet. We can obtain an estimate of

the size of this disk by assuming that gas elements conserve

specific angular momentum once they enter the planet's Hill

sphere. Equating the centrifugal radius to the planetary gravi-

tational forces, one obtain the centrifugal radius rc _ Rn/48

(Cassen and Pettibone 1976; Stevenson et al. 1986). For
S

Jupiter and Saturn these are r[ _ 15Rj and rc ,_ 22Rs re-

spectively, remarkably close to the positions of Ganymede and

Titan. It is tempting to conclude that this is roughly the size of

the gas disk which led to formation of the satellites. One must

keep in mind, however, that Callisto is at 26Rj nearly twice

the size of Jupiter's centrifugal radius, and lapetus is at 59Rs

nearly three times the size of Saturn's centrifugal radius. Our

model accounts for these facts by using a two component pro-

toplanetary subnebula. As the planet grows the centrifugal ra-

dius moves outward. Since the giant planet accretion timescale

may be comparable to the viscous evolution timescale a thick

inner disk forms. Inside of the centrifugal radius (after plan-

etary accretion has been completed) the average surface gas

density E exceeds 105 g cm -2, which yields a vertical optical

depth (not including ice grains) due to absorption by hydrogen

molecules r,_ ,--, EKg,_s ,-_ 10, where Kga_ _ 10 -4 cm z

g- 1 is the Rosseland mean gas opacity (Lunine and Stevenson

1982). Well outside the centrifugal radius gas surface densities

are in the range 102 - 103 g cm -2, which results in a low ver-

tical optical depth in the range rv _ 0.01 - 0.1. As we shall

see, this transition from high optical depth to low optical depth

has important consequences when it comes to the temperature

profile, the turbulence properties of the subnebula, as well as

for the process of satellite formation itself.

While grains increase the opacity so long as grain sizes

are in the order of the infrared wavelength, we expect that

coagulation will quickly lead to larger grain sizes (Weiden-

schilling and Cuzzi 1993). In the subnebula we expect that the

dust density is determined by a balance between the collisional

dust production rate and the removal rate by drift, coagulation,

accretion and the like. In such an equilibrium state it may

be appropriate to assume a power law size distribution. If we

take this distribution to behave like r_,-3 (as may result in a

collisional situation where erosion replenishes small particles)

and use rp = 103 cm as the upper size cut-off, we find that the

mass in particles smaller than #m is _ 10 -7 of the total mass

in the disk. Using _ = (4/3)psrprd_,_, where rdu,_ is the

micron-sized dust optical depth, we find that for disk surface

densities E_ < 103 g cm -_ we have ra_,t < 1 (where a grain

density of p,, = 1.0 g cm -3 has been used). As a result, the

dust optical depth is likely to drop below 1 once the satellites

have accreted (in a starved disk, where the disk surface density

is always small, the dust optical depth may always be < 1).

However, the possibility that close to the planet hypervelocity

collisions lead to large dust production and dust optical depth

> 1 cannot be ruled out. We return to this issue in Paper II.

For now we simply consider the gaseous opacity alone.

If the opacity is small, individual grains are in radiative

balance with the planet's luminosity and heat the surrounding

gas and a temperature profile results with T <x r-1/2 (Pollack

et al. 1977) (though some intricacies, which we need not get

into here, result in "flaring" disks [e.g. Chiang and Goldreich

1999]). on the other hand, when the opacity is high, viscous

dissipation within the nebula plays a central role in heating

the gas and driving its evolution (Lynden-Beli and Pringle

1974). Lin and Papaloizou (1980) and Lin (1981) have sug-

gested that thermal convection in the vertical direction drives

the turbulence that leads to viscous dissipation, and have used

mixing length theory to calculate it. According to their mod-

els, the inner opaque regions of viscous accretion disks have

a temperature profile given by T cx r-3/z; however, rapid

particle coagulation means that it is unlikely that convection

drives turbulence in the Jovian subnebula. Klahr and Boden-

heimer (2001) show that a radial entropy gradient can lead

to strong global turbulence. Such a radial gradient is likely

to apply to the non-isothermal optically-thick portion of the

subnebula gas disk, and it may lead to a temperature profile

of the form T _x r -_ as is suggested by some solar nebula

models (Cameron and Pine 1973; Cameron 1978). Like pre-

vious authors (Lewis 1972; Lunine and Stevenson 1982), we

characterize the temperature of the gas disk by choosing the

current radial distance for Ganymede as the location for the

condensation of ice.

There are numerous processes at work that might con-

ceivably lead to satellite migration. Most importantly, the gas

torque on a full-sized Galilean satellite, when most of its water

was already accreted, may alter the appropriate choice for the

location of the condensation of ice. Nevertheless, the close-

ness of Ganymede to Jupiter's centrifugal radius tends to make

us think that this satellite underwent limited radial migration.

Furthermore, our model makes Ganymede from materials ac-

creted by gas drag between ,--, 15Rj to _ 23R.i. Thus, setting

the ice condensation temperature at 15Rj ensures that nearly

all of the material that went into Ganymede had its comple-

ment of water in place. The resulting temperature profile is

T = 3600/x, where :r = r/Rj, which is the same profile as

that chosen by Lunine and Stevenson (1982); however, unlike

that work, which formed all the Galilean satellites out of a
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densesubnebula,inourmodelthehigh-opticaldepthsubneb-
ulaextends only out to _ 25R j, which does not encompass

Callisto's radial location.

It should also be noted that the inner disk is not isothermal

in the vertical direction. We expect that the temperature at the

midplane is several times the temperature at the disk surfaces.

Therefore, the above temperature represents a vertically aver-

aged quantity. In the outer disk the temperature can be as low

as the solar nebula temperature at the location of Jupiter -,_ 130

K. For times ,-_ 107 years, after accretion, once the planet has

had a chance to cool, the temperature in the disk is constant

and equal to the background temperature.

There are three mechanisms that can lead to the presence

of an extended gas disk. The giant planet can spin-out a disk

during its contraction phase (Korycansky et al. 1991). In a

viscous disk, gas inside the radius of maximum viscous stress

(probably located in the neighborhood of the centrifugal ra-
dius) drifts inwards as it loses angular momentum while gas

outside this location expands outwards as it receives angu-

lar momentum (Lynden-Bell and Pringle 1974). Finally an

extended disk will result from the torque of the Sun on gas

flowing from the Roche-lobe. In this study we favor the lat-

ter possibility. In order to characterize the properties of the

extended, low density disk outside the centrifugal radius we

make use of simple scaling relations. Numerical studies show

that after Jupiter opens a gap in the solar nebula a large disk of

circumplalietm'y gas is left (Bryden et al. 1999_ Korycansky

and Papaloizou 1996). The argument presented here is based

on angular momentum calculations where the size of the disk

is determined by the torque of the Sun on the infalling gas

(Bryden et al. 1999).

It is useful here to discuss planetary gap opening in some

detail. We can estimate the timescale for gap opening by

calculating the angular momentum Lr, in an annulus of half-

width A. Given the planetary torque on this annulus LT,

the timescale for gap opening is given by _'_ol, _ LA/I_T.

An analytical estimate for the gap opening timescale can be

obtained using the torque formula (Lin and Papaloizou 1993)

(Mp 2 (ap
LT = 023 \M-do,/ VX-J ' (1)

where the planetary feeding zone A must be larger than the

scale-height of the nebula H at the semi-major axis of the giant

planet ap. The angular momentum the planet must remove
from the annulus of half-width A in order to open up a gap is

approximately given by

La ._ M(GMo)ll2((aP + A) 112 - (ap + 1A)ll2)

,._ ¼ MQapA,

(2)

1 2 2
where M = 27¢_Aap so that LA ._ _'lrE_apA . Then

we have the gap opening time _'ga_, _ (A/aP)SP/q 2, where

q = Mp/MQ (Bryden etal. 1999). Unless A is several times

the planet's Hill radius, accretion onto the planet will continue.

For some nebula models (Lubow et al. 1999) a gap will fail to

stop the accretion of a Jupiter mass (1Ma) giant planet. These

workers estimate that it will take a 6Ma planet to create a gap

large enough with respect to its Roche-lobe to stop accretion

onto the planet. Of course, it then becomes difficult to explain

the mass of Jupiter. Nevertheless, gas flowing through the gap

is clearly a significant issue that needs to be addressed. In

our model, given its high specific angular momentum, this late

amving component simply adds gas and some condensables

(what fraction of condensables is uncertain, though it is likely

to be well below solar mixtures since at late times most of the

solids are in the form of planetesimals which do not couple to

the gas [Weidenschilling 1997]) to the outer disk after Jupiter

has already accreted most of its mass. In any case, it is clear

that the relevant size of the annulus A has to be large compared

to the Roche-lobe of the planet in order to lower the mass rate

accreted onto the planet. Using A _ 0.2aa (which is about

three times larger than the Hill radius for Jupiter), we obtain

rg,, n -,, 380P, where P is the period of Jupiter's orbit. This

estimate is similar to the numerical value *'g,,r, " 320 P ,-,

4 x 10 _ years given by Bryden et al. (1999).

It must be stressed that in the context of the satellites we

are more interested in halting inward migration than we are

in ending accretion. We expect accretion of the large, regular

satellites to end when the disk has been depleted of condens-

ables, or when an outer satellite limits the inner sateltite's

supply of inward drifting satellitesimals (see Section 4). This

differs from the solar nebula context where a minimum mass

model may not apply (Lissauer and Stewart 1993). It is possi-

ble, however, that gap-opening also plays a role in regulating

the growth of satellites.

To obtain an estimate for the total mass left in the circumjo-

vian disk after gap opening we use Mdisk "" Md'rgap/'racc "_

100 Moattisto, where 7"acc _ 106 years is the timescale for the

accretion of gas onto Jupiter. This estimate is meant to indicate

that faster planetary accretion may lead to a larger outer disk

mass. Using a mass ratio of gas to solids of ,,_ 100 (Pollack

et al. 1994), we obtain a mass of solids _ MOallisto. Deter-

mining the size of the outer disk requires careful calculation

of the angular momentum of infalling material. Because the

material flows in from the Roche-lobe, the angular momentum

of the resulting disk is sensitive to the solar torque. Numerical

simulations give sizes as large as ,-, R,.ochJ2 (Bryden et al.

1999; Korycansky and Papaloizou 1996; Korycansky et al.

1991.) Thus, to the extent that we can apply solar composi-

tion mixtures to the Jovian subnebula, we expect that the outer

gas disk extends to a fraction of the planet's Roche-lobe and

contains enough rock/ice to form a Callisto-sized object. Here

we adopt the more conservative choice P_o_h_/5 _ 150Rj

for the size of the outer disk (we choose the same fraction

for Saturn, which corresponds to a larger distance ,,_ 200Rs).

We justify this choice by noting that the inner irregular Jo-
vian satellites are located at 160/{j just outside this distance.

That is, we tie the position of the outer disk to the location of

the inner irregular satellites. Too much gas beyond this point
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would have resulted in the inward drag of these objects. In

our model, gas drag explains the absence of irregular satellites

closer in to Jupiter (in the case of Saturn a similar argument

can be made for Phoebe at 215Rs). We expect that the same

overall process that led to capture of the irregular satellites

also yielded the bulk of the mass that ended up in the satellite

systems. That is, prior to hydrodynamical collapse Jupiter's

envelope extended out to _ 300Rj and led to the capture of

irregulars inside of this radius (Pollack et al. 1979). After

hydrodynamical collapse a disk was left behind that dragged

in all the solids left in orbits < 150Rj. Even if a different

method were employed to capture at least some of the irreg-

ular satellites, we stress that their locations imply a relatively

sharp cut off in the gas distribution of the outer disk. This is
difficult to reconcile with a viscous medium. We attribute this

observation to the low viscosity of the gas in the optically thin,

outer disk.

Even though our scenario is generally consistent with the

spin out scenario of Korycansky et al. (1991), we do not rely

on its validity. The spin out model assumes opacities that are

arguably too large if one takes into consideration coagulation

and settling of dust grains (which provide the source of the

opacity). For lower opacities, the spin out would not have

taken place. On a related issue, lower opacities would also lead

to faster formation times for the giant planets. For instance,

a Jupiter formation model with 2 % of the grain opacity of

standard models would shorten Jupiter's accretion time from

7 x 106 years to ,-_ 3 x 106 years (Olenka Hubickyj, private

communication). Such a scenario would also invalidate the

spin out results. Yet, our simple scaling formula for the mass

of the outer disk shows that shorter planetary accretion times

correspond to larger outer disk masses. It is worth noting that
whether due to the Sun's torque on the infalling gas or the spin

out of the protoplanetary envelope an extended disk will result.

Since it seems likely that the opacity of the planetary envelope

will decrease sharply as a result of the processes mentioned

above, we favor a model that does not rely on the spin-out of

the gaseous envelope.

So far we have described a circumplanetary disk (or sub-

nebula) with an optically thick (even when grains are excluded)

inner region inside of the centrifugal radius, and an optically

thin outer region outside of the centrifugal radius and extend-

ing to a significant fraction of the Roche lobe. To charac-

terize the transition region between the inner and outer disks

let us first assume that planetary accretion drives subnebula

turbulence. If we choose a timescale for gas evolution in

the presence of accretion driven turbulent viscosity to be the

gap opening time to ,-, 1000 years and we use a lengthscale

on the order of the centrifugal radius Ro ,_ rc ,,, 15R j,

we get v = 1_/to _ 10 II - 1012 cm 2 s-1. This gives

ot ,-, 10 -4 - 10 -3, consistent with the scenario of Klahr and

Bodenheimer (2001). This leads us to expect that following

planetary accretion the location of the gas density drop-off will

be outside but close to the location of the centrifugal radius.

Unfortunately, the size of the transition region is unknown.

However, it must be larger than the scale-height to avoid be-

coming Rayleigh unstable (Lin and Papaloizou 1993). This

sets our choice for the maximum surface density gradient in

the transition region.

TABLE I1

Surface Density Parameters

Jupiter Saturn (3.7) Saturn (lap) Uranus

_°n't 51 10 11 1

_o0,,t t 0.31 0.065 0.0077 ?

r_ 20 25 25 57

r2_ 26 37 41 '_

R_n 14 16 18 ?

RIo,,t 87 115 117 ?

a_ 36 5.4 5.8 ?

b_ 13 9 14 ?

t Units are in 104 g cm -2

Units are in planetary radii Rp.
o o

* Unsmoothed values, bl = in [(Ein Rinr2)/(Eou t Routrl )]
In (r2/rl)

Following the completion of accretion, the gas turbulence

will significantly die down and the subnebula disk will cool

in a Kelvin-Helmholtz timescale _ 104 years (Stevenson et

al 1986). At the outer edge of the inner disk, where the sub-

nebula temperature approaches the background temperature

of the solar nebula, the flow will become laminar, with very

low viscosity and long evolution times. Closer in, remnant

turbulence will be driven by the entropy gradient due to the

planetary gravitational energy release. It can be seen that

our model has a constant value for H/r inside of Ganymede.

For such a model the entropy is a function of radial location

S(r) = p/p7 ocr -3+2"r, where p is the pressure, p is the

mass density, and 7 is the ratio of specific heats. Because

the entropy decreases with distance, it gives rise to a non-

zero baroclinic term (Klahr and Bodenheimer 2001). If we

estimate the post-accretion turbulence inside Ganymede to be

ct _ 10 -s - 10 -6 then the timescale for Jupiter's inner disk

to become optically thin is _ 104 - 106 years, considerably

shorter than the timescale for Jupiter to cool offin _ 10 T years.

Thus, we expect the inner disk to continue evolving until a gas

density of --, 104 g cm -_ is reached. At that time the inner

disk will become optically thin and the turbulence should die

down. Hence it should be difficult to lower the density of

the disk below gaseous optical depth of order unity by gas

turbulence alone (unless small dust particles are kept around

on viscous timescales, which presents a problem given the

much shorter coagulation timescales). Once the planet cools

down the subnebula will become essentially quiescent. In the

low optical depth regions of the disk we have constant T and

,..q'(r) cx r_ ('t-l) . For an isothermal gas 3' = 1, so the entropy

is constant. As a result, for the outer disk early on we expect

weak turbulence close to the midplane driven by the presence

of a dust and rubble layer (due to the particle shear layer [Cuzzi

et al. 1993]), and laminar flow at later times.

Specifically, as a starting condition we choose a simple

model where the gas density follows a simple 1/r dependence

inside of 20R._ and outside of 26Rj. The transition region
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has a width of about --, 2He, where Hc is the subnebula scale-

height at the centrifugal radius of the primary. This choice

ensures that the gradient in gas density is not so steep as to

lead to a Rayleigh-Taylor instability (e.g., Lin and Papaloizou

1993). Our density profile is given by

I's°,,(P_,,/,),
_(r) = _alr -h,

I _o°,,<(_,,,/,-),

r <rl;

r] < r < r2;

r>r2.

(3)

where the relevant parameters for our various model choices

are presented in Table II.
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Figure 2: Comparison of gas surface density for our mod-

els as well as previous models for the Saturnian and Jovian

systems. LS(J): Lunine and Stevenson (1982). JMM/SMM:

The minimum mass model for Jupiter and Saturn respec-

tively of Pollack etal_, 1994. KBP: Spin out models of Ko-

rycansky etal_, 1991 for Saturn. ME(J): Our minimum mass

density profile for Jupiter after re-constitution of volatiles

for Io and Europa. Disk size extends to _ 150Rj. ME(S):

Solid line indicates our model for Saturn in which the mass

of solids in the subnebula is taken to be 3.7 times less that

of Jupiter. Dotted line indicates our model in which the

minimum amount of mass is placed outside of the orbit of

Iapetus to form it. The location of both Jupiter's and Sat-

urn's centrifugal radii are labeled.

In Figure 2, we plot the surface density as a function of

radial location for our model for Jupiter and Saturn as well

as other models in the literature. Though our model bears a

close relation to the minimum mass model it differs in the dis-

tribution of mass in that we allow for an extended low density

component. For Jupiter, the mass of Callisto is distributed in

the outer disk. For Saturn, we do not spread the mass of Titan

out to lapetus as is done in the SMM model. Rather, we expect
that most of the mass of Titan came from the inner disk which

extends roughly out to the position of Hyperion. It should be

noted that in our model the size of the inner disk of Saturn and

Jupiter scale with the size of the planet's Hill radius, which

leads to a more extended inner disk for Saturn. The surface

density of Saturn's disk is smaller both because there is less

mass in the satellite system and also because the mass is more

spread out. We have plotted two curves for our Saturn model

which differ mostly in the treatment of the outer disk. The

solid curve corresponds to a model where we keep a constant

mass ratio of 3.7 for the masses of the outer and inner disks

of Jupiter with respect to the outer and inner disks of Saturn.

The dotted curve was determined by the amount of material

needed to make Iapetus out of the condensables present in the

outer disk assuming a cosmic mixture (see Section 6). The

curves labeled KBP correspond to cases for Saturn and should

be compared to our Saturn curves. Notice the presence of an

extended component out to ILoche/2 "_ 500Rs for the KBP

model. These correspond to the spin out scenario of Korycan-

sky et al. (1991). The curves labeled LS(J) correspond to

the work of Lunine and Stevenson (1982), which extended an

adiabat from the planet to form a subnebula with several times

more mass in solids than is present in Jupiter's satellite system.

i i
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400 _"i"'"'""-..,

10 100

Distance (planetary radii)

Figure 3: Temperature profiles used in our modeling. In-

ner disk temperature varies like r-1. Transition in behav-

ior to r -1/2 occurs around the centrifugal radius of both

planets. Temperatures at greater distances in the outer

disk are isothermal. The temperatures in the outer disk are

taken to be that of the equilibrium solar nebula temperature

(Te _ 280V/1"A--U-_) which is roughly 130 K for Jupiter and

90 K for Saturn. 250 K is set to coincide with the position

of Ganymede for Jupiter, and Rhea for Saturn.

In Figure 3, we plot the temperature profile of the disks
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of Jupiter and Saturn as a function of radial location. As one

would expect, Saturn' disk has less variation in temperature.

It bears remembering that this is the mean temperature dis-

tribution immediately following planetary accretion. Jupiter's

cooling timescale is _ 10 r years and Saturn's is ,-- 106 years

(Pollack et al. 1976). Saturn's temperature profile will be

described more fully in Section 6.

10 II

10" i

'm 1o.

:, IOT

10`

-- Jupiter
_turn

10

,oI10`

_10_) i , , , , , _ _I___

10

t_

I0"

10

r/Rp

Figure 4: A plot of viscosity, diffusion time, and turbulence

coefficient for Jupiter and Saturn's inner disk using our tem-

perature profiles (see Figure 2). Low viscosities correspond

to weak turbulence and long evolution times. The bumps

present in the Jupiter curve but not the Saturn curve is due

to the difference in the temperature profiles in the transition

region.

For our optically thick disk where the temperature profile

is determined by viscous dissipation we have

Err2 \ dr } = 2as. (T a - T_),
(4)

where asB is the Stefan-Boltzmann constant, T is the photo-

spheric temperature, and To is the nebula background temper-

ature. In Figure 4 we use the density profile of Figure 2, the

temperature profile of Figure 3, the above equation, and the

equation t ,,, r2/_ , to plot the viscosity, the diffusion time, and

the turbulence coefficient _ = _,f2/c 2, where c is the speed of

sound, as a function of position in the disk for Jupiter and Sat-

urn (the lapetus model was used for Saturn, see Section 6). It

is clear that our temperature profile corresponds to the case of

weak turbulence, with long evolution times. A viscosity bump

is seen in the Jupiter curve but not the Saturn curve due to the

difference in the temperature profiles in the transition region.

In the case of Jupiter, this transition is significantly hotter than

the background temperature (see Figure 3). Hence, the sharp

drop in density leads to larger viscosity values as given by Eq.

(4). On the other hand, Saturn's transition region has a temper-

ature essentially equal to the background temperature, and so

no viscosity bump is observed. Because the temperature pro-

files are set by assuming accretion temperatures for Ganymede

and Titan, and are subject to significant modeling uncertainty,

it is presently unclear how significant this viscosity bump is, or

its effect on satellite accretion. It is interesting to note that the

diffusion time of the inner disk increases with distance. As a

result, the inner disk density profile (see Figure 2) will tend to

flatten with time. Though some turbulence models may allow

for the possibility of surface density profiles that increase with

distance (Bell et al. 1997), more work will have to be done

before it is understood whether that is a realistic possibility in

the present context.

It is important to point out that our nebula is not verti-

cally isothermal. The temperatures at the midplane are signif-

icantly larger than the photospheric temperatures. Hence, it

is unlikely that satellite accretion can be thought of as a het-

erogeneous process with the rock component accreting at the

same time as the ice component. Nevertheless, the ice/rock

ratio of the large satellites indicates that this complication does

not prevent accretion of either component. To the extent that

non-homogeneous accretion can affect the final structure of

the satellites, it will do so in the inner disk, where the cooling

times are significantly longer and the accretion times shorter.

Though our chosen temperature profile indicates that the satel-

lite itself is in a hotter region of the disk, this may not pose a

problem. Since the dynamical time is likely to be considerably

faster than the timescale at which particles of size ,-, 50 m (the

size at which particles decouple from the thick Jovian gas disk)

melt and/or vaporize, a satellite at the Jovian midplane may

still accrete water.

4 Galilean Satellite Accretion and Evolution

In analogy to gas-free planetary accretion we begin the prob-

lem of satellite accretion by calculating characteristic sizes

of sateilitesimals and satellite embryos for our disk parame-

ters assuming a satellitesimal density of Ps = 1.5 gcm -a.

Though our problem differs markedly from one in which the

satellites are accreted in the absence of gas, we will show later

that the characteristic sizes one obtains in the presence of gas

are roughly consistent with the ones we give below, which

are meant only as a loose indication of typical object sizes.

The characteristic length scale and mass scales over which the

disk's self-gravity dominates shear is approximately !1 = rn,

where 11 = (ml/Tr_s) 1/2 and rn = a(ml/JMj) 1/3 is

the Hill radius of a satellitesimal of mass rnt (e.g. Ward

1996). Using a surface density of solids of ]Es ,--, 5 × 103

g cm -2 for the inner disk of radius ,-, 15R j, we obtain

rn_ ,-,- 1.6 × 10 lr g, which corresponds to a satellitesimal

radius of _ 3 km and ll ,--, 32 km. The second characteris-

tic mass and radial scale, !¢ = m2/(47raEs), is the distance

over which Keplerian shear can force close encounters among

satellitesimals 12 = rH. This gives m2 = 81rEsa2(pa/3) 1/2,
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where#a = 7rE,a_/MJ. Using the same surface density as

before, we get rn2 ,-, 7.6 x I0_4 g, which corresponds to an

embryo radius of,-, 1100 km and Is ,_ 1.2 x 104 km.

Assuming satellite formation is controlled by binary accre-

tion of satellitesimals we can write the timescale for accretion

as (Safronov 1969; Lissauer and Stewart 1993; Ward 1993)

P8 r_l p--I

_-_ ~ _., , (5)

where F 9 is the gravitational focusing factor. In the context

of planetary accretion this focusing factor can be quite large

during runaway growth. For satellites, however, the Hill radius

rn is never much larger than the physical radius r,. An upper

limit to the enhancement factor can be obtained (e.g., Weiden-

schilling, 1974) ['9 ,_ (rH/r_) _/2 _ O(10) for Ganymede.

Then we can use Eq. (5) to obtain

r_4.8 i gcm_S _ x

(10',ern-2"_ (a ,_3/2_, ] \ 2--_j ] Fg-' years.

(6)

Given surface density of solids of IE, --, 103 g cm -2, this

formula predicts a timescale of formation of _ 100 years for

a Gaiilean-sized satellite. This, however, assumes that all the

solids in the disk at any one time are in the form of satellites-

imals. Let us assume for the sake of discussion that at some

time early on all the solids in the inner disk are in satellitesi-

mals of characteristic size --, 1 kin. In that case, the time for

drag to completely clear the inner disk of solids (see Eq. 9)

would be a few years! Therefore, it is unlikely that the binary

accretion timescale controls the process of satellite formation

unless most of the mass resides in large satellitesimals. In the

inner disk we expect turbulence (albeit weak) to be present

during satellite accretion. Hence it may not be a valid assump-
tion to start with a disk of satellitesimals. Instead we form

satellites first by the sweep up of dust and rubble, followed

by the accretion of inwardly migrating satellitesimals once a

significant fraction of the solids in the disk have aggregated to

satellitesimal sized objects.
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Figure 5: (a) Orbital decay times of satellitesimals of vari-

ous sizes due to gas drag and gas tidal torque at 15Rj. The

gas surface density for our models is indicated in the plot

for this radial location. The decay times of smaller objects

is dominated by gas drag, while larger objects are controlled

by gas tidal torque with the transition between 500-1000 km.

(b) Orbital decay times of satellitesimals of various sizes due

to gas drag and gas tidal torque at 50Rj.

In Figure 5, we calculate the orbital decay timescales due

to gas drag and tidal torque of a proto-satellite at 15Rj (a) and

50Rj (b) for a range of gas densities. Because the gas is partly

supported by gas pressure, its orbital velocity va,,, is slightly

lowered with respect to the Keplerian circular velocity VK. An
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object orbiting at Keplerian speed will therefore experience

head-wind and drag towards the primary. A measure of the

difference between the Keplerian velocity and the drag velocity

is given by

VK 2p_v_ Or '

where P is the gas pressure, and c is the speed of sound. The

timescale for orbital decay due to gas drag is given by

4p_rpvK 2c
vga, - 3Co(Av)2 12E (8)

where Ps and rp are the satellitesimal density and radius,

Co = 0.44 is the Stokes flow regime drag coefficient for

high Reynolds number, f_ is the orbital frequency, _3 is the

gas surface density, and Av -- r/vK. The stopping time ts

can be written in terms of the timescale for radial migration

t_ = 2Av_'ga_/vK (Weidenschilling 1988). We can write

Eq. 8 in the form

rg,_s _ 22 (_)(1-_m)(13_0TK)S/2 x

(lOS_m-_) years.

(9)

The torque timescales are calculated using the formulation of

Ward (1997). A generalized version of the torque exerted on

the disk in the vicinity of an mth order Lindblad resonance

(Goldreich and Tremaine 1978,1979; Ward 1997) is given by

T..= {rdD"
k dr/

(10)

where kvm is the forcing function of the satellite, and D, is a

function of the difference in local epicyclic frequency of the

disk and the Doppler shifted forcing frequency, as well as the

gas sound speed. A estimate of the forcing function that works

well in cases far from the transition region is xI,m --_ (2m -

1)GM,/a, where M_ is the satellite mass and a is its position,

with m _ a/H, the resonance where most of the torque is

deposited (Takeuchi et al. 1996). and rdD./dr _ 3f_ 2. We

can write the orbital decay timescale due to tidal torque in

terms of our subnebula parameters

rtorq_3.2x 104 (lg_cm-3') (lOOkm_ 3-- X

\ ps ] \ rp ]

(
(11)

Using Equations (9) and (1 I) we can get a rough estimate of

the transition size rr of a sateilitesimal where gas drag and

gas torque are equivalent

rT _ 200 1 gcm-3 a
p, \ 13-Sb---ff] _ km

(12)

which yields a size of _ 500 km for a sateltitesimal with den-

sity p, = 1.5 gcm -3 at 15Rj. For larger sizes, the gas torque

dominates the satellite's evolution. Since the estimate given by

Eq. (1 l) does not take into account that the net torque must be

weighted by a measure of the torque asymmetry between inner

and outer torques, this expression overestimates the strength

of the net torque. Actual torque values used to produce the

figures are calculated by summing over inner and outer reso-

nances out to a value ofm >> af_/c. Such a torque produces

mostly inwardly migrating satellites (Ward 1997; see Paper II

for a more detailed discussion of the torque).

Figure 5 considers the evolution of satellites with r, =

500, 1000, and 2500 km as a result of gas drag and tidal torque

separately. In Figure 5a, we show the orbital decay timescale

for an object located at 15Rj for a range of gas densities

appropriate to the inner disk (_,, = 104 - 108 g cm-Z). The

decay times due to gas drag are typically shorter than those due

to torque, however for the larger objects, the torque begins to

dominate their evolution. In the inner disk the transition takes

place for objects of size _ 1000 km. Similarly in Figure 5b, we

show the orbital decay of an object starting at 50Rj where the

gas density is much lower (_ = 10-1000 g cm-2). From this

figure, it is clear that survival of a satellite in a gaseous medium

(where most of the mass and angular momentum resides in

the gas component) is an issue that needs to be addressed

for objects of all sizes. Lengthening the satellite formation

timescale in order to accommodate a partially differentiated

Callisto makes this issue even more of a concern (see Section

5). So long as solar mixtures are used, decreasing the gas

density is unlikely to help survival since that also decreases

the surface density of disk condeusables El,. Thus, the ratio

of the growth timescale by rubble and dust sweep up to the

orbital decay timescale by gas drag remains the same (see

discussion following Eq. 14). On the other hand, enhancing

the concentration of condensables does improve the chances
of satellite survival.

Given the short orbital decay times, we need to ask whether

any solids present in the subnebula would survive long enough

to make satellites. We argue here that the timescale for Galilean

satellite formation is ,-, 103 years, sufficiently short to survive

inward migration. What happened after the satellite grew to

its full size is discussed in Paper II.

We start by assuming the formation of satellitesimals as

a result of particle aggregation (Weidenschilling and Cuzzi

1993). Though a gravitational instability (Goldreich and Ward

1973) probably did not take place (Cuzzi et al. 1993) it is

still possible that other instabilities did (Goodman and Pindor

2000). Once satellitesimals form they quickly settle down to
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thesubnebulamidplane.Theseobjectscontinuetogrowby
dustandrubblesweepuporbyaccretionofothersatellitesi-
reals.Let'sfirstconsiderthegrowthtimescaleduetodustand
rubblesweep-up.Assumingthattheparticlesizesaresmall
enoughthattheyareentrainedinthegaswecanwritethetime
scaleas

4p_rp (13)
rs_p- 3/SpAvp

We can also write this equation in the form

(14)

(r,_,p-.m 0.58 1 _ _-j x

(13OK) 1/z ( 105 g_cm-a) (_-_P)years,

where Hp is the particle scale height, H is the subnebula

scale-height, and we have assumed a two-population particle

size distribution where large particles move at essentially Ke-

plerian speeds while the small particles are entrained in the

gas. We have also assumed that the dust density is less than

the gas density, and so the head-wind is not lowered by the

dust concentration. That is, we let Avp _ Av _ r/vK. Al-

lowing for Hp < H, the sweep up timescale is smaller than

the drag timescale for a < 38Rj; that far from the planet our

model is optically thin, isothermal and quiescent. As a result,

in the outer disk we expect Hp << H (see Section 5). In

the inner disk we expect Hp < H during most or all of the

satellite accretion process. Quite generally, then, this model

yields shorter sweep up times than drag times, thus favoring

the formation of satellites. In the inner disk (inside of 15R j,

T = 250 K), where the temperature is inversely proportional

to the radial location, the ratio of the sweep up time to the

gas drag time is independent of semi-major axis and particle

size r,_,,,_/rga, ,'_ Hp/H < 1. This result makes it possible

to form satellites of any size < 1000 km (such that gas drag

dominates their inward migration) at any radial location in the

inner disk.

In the presence of turbulence, balance is established be-

tween the rate of diffusion of dust due to turbulence and the

rate of settling due to gravity. The scale height of dust is then

given by

(;,122t * (15)

where the Schmidt number is approximately given by Se =

1 + fiG, and (TH _ 1 is a constant. We expect accretion to

take place under weak turbulence (a -,, 10 -6 - 10 -5) which

corresponds to turbulent viscosity u ,_ 10 l° cm 2 s -_ (see

Figure 4). For 1 cm particles we get Hp -,_ 0.2H. Then the

sweep-up timescale for a 1000 km object becomes 7-,_,_, ,-,

IOa(Hp/H) _ 200 years. Notice also that dust of size 1 cm

will diffuse a distance d _ (tv/Sc) 1/2 _ OARs in a time

t = 27ra/Av due to gas turbulence. Since this is much larger

than _ 1000 km, the embryo will not clear its lane.

This timescale is likely to overestimate the time it would

take to form such a satellite embryo for three reasons. First,

dust will coagulate and settle to the midplane, thus lowering the

sweep up time (as it settles it will migrate and grow). Second,

the turbulence itself may die down further for optically thin

disks (though the timescale for this to happen may be longer

than the satellite accretion timescale). Third, an embryo will

also grow due to capture of inwardly migrating satellitesimals.

The process of dust coagulation is complicated, and we will

not address it at this time.

Thus, satellite embryos can be made sufficiently quickly

to survive inward migration due to gas drag. It is important to

notice that sweep-up and gas drag are both proportional to the

object's radius. As a result, sweep up growth is sufficiently

fast for embryos of all sizes to survive. On the other hand, it is

possible that global turbulence persists long enough for some

satellite embryos to be lost due to inward migration. At any

rate, inward migration of satellite embryos appears very likely.

This would not be a serious problem since most of the mass

would then still be contained in the puffed-up dust and rubble

disk. The issue becomes how to prevent mass loss in growing

embryo-sized objects to satellite-sized objects.

As we noted before, for objects larger than 1000 km,

migration due to gas torque becomes dominant over migration

due to gas drag. Since the orbital decay time due to torque

of a Galilean-sized object is again about 103 years, one might

he tempted to simply continue sweeping up dust and rubble.

However, so far we have assumed a large reservoir of dust and

rubble such that the surface density to be swept did not change

as the embryo grew. Clearly, as the surface density of dust

and rubble decreases so will the efficiency of this process. In

any event, coagulation of dust and possibly the decay of gas

turbulence make it likely that embryos grew to satellite size by

accretion of satellitesimals.

We first define the feeding zone of a satellite embryo.

During closest approach, a satellite embryo will pump the ec-

centricity of a previously circular satellitesimal by the amount

e = 2.24(ras/Mj)(a/st) 2 (Julian and Toomre 1966), where

rn_ is the mass of the embryo and st is the separation between

the two objects. Crossing orbits will result if st = ae. Using

this condition we obtain st = a(2.24m_/MJ) 1/_ for the size

of the embryo's feeding zone. (i.e. we take the feeding zone to

be _ 2rtt; this is slightly more conservative than the value for

the feeding zone 2v_rH one obtains using Jacobi's constant

and asking that the separation between the two bodies be such

that they never experience close approaches). One can now

define an embryo size such that most satellitesimals dragging

into its feeding zone will be accreted. Suppose we take a satel-

iitesimal of mass mr, which corresponds to a radius ,-, 3 km.

Such a satellitesimal has a very fast evolution timescale of,-- 8

years. We calculate the drag distance l,_ = (vu27ra/312) 1/2

(with va = a/_'9a_) such that 21,i is the distance a satellitesimal

will drag after one synodic period of two objects a distance la



4 GAL1LEAN SATELLITE ACCRETION AND EVOLUTION

from each other. Then using the condition st = la we calculate

an embryo mass ma _ 2.2 x 10 _5 g, which corresponds to an

object size --, 1500 km, and a feeding size of sl ,-_ 32000 km.

The time it took for the satellitesimal to cross this feeding

zone (assuming that satellitesimal growth can be ignored; i.e.

the embryo has cleared its feeding zone) was _ 0.22 years

(the synodic time of two objects separated by ,-_ 32000 km at

15R j). If we increase the concentration of solids by a factor of

4 then the embryo size becomes 760 km (the smaller embryo

size results from the longer satellitesimal orbital decay times

in a disk with 4 times less gas). Hence once an embryo has

reached a size _ 1000 km its growth rate is controlled by the

inward drift time of the characteristic size of the satellitesimals

it accretes. If it mostly accretes kilometer sized sateUitesimals

the time between the embryo stage to full satellite is tens of

years. On the other end, if most of its mass comes from the

accretion of other embryos then the upper limit on the satellite

accretion timescale is 104 years.

There are two mechanisms that limit the efficiency of

drift augmented accretion. First, resonant capture may pre-

vent satellitesimals from reaching the embryo. This, however,

may not be an issue for the inner disk (or for the outer disk,

though for a different reason; see Section 5). The embryo is

not massive enough to prevent the orbital decay of kilometer

sized objects given the gas surface densities of the inner disk

(but see Section 6.2 where we discuss the resonant capture of

Hyperion by proto-Titan, and the absence of a corresponding

object for Ganymede). Second, the drifting satellitesimal may

"horseshoe" around the embryo and avoid being captured by

it. Kary et al. (1993) give impact probabilities for various

mass ratios of the secondary to the primary as a function of

the secondary's physical radius divided by its Hill radius. For

a 1500 km embryo with density ps = 1.5 g cm -3 this ratio is

rs/rn _ 0.1. As the embryo grows to satellite size the ratio

will decrease slightly (due to the slight increase in its density).

On the other hand, its feeding zone will increase and it will get

more chances to capture any given satellitesimal. Hence we

expect that the capture efficiency will improve slightly as the

embryo grows (though for sufficiently large embryo masses,

such that the gas flow around the secondary is changed signif-

icantly or a gap is opened, the efficiency may again decrease).

Given the criterion used to calculate the embryo size, we are

in the gas regime of significant impact probability. Then from

Kary etal. (1993) (their Figure 9) we see that the impact prob-

ability for the case such that r,/rH = 0.1 is between 0.6 and

0.85 (in the limit that gas drag effectively damps eccentricities

and inclinations of the feeder population). This impact prob-

ability is high enough that a minimum subnebula model may

apply to the accretion of satellites (by contrast, giant planet

cores have much smaller ratios of the physical size to their Hill

radius, and are therefore unable to efficiently capture inwardly

drifting planetesimals). This is a significant result. It says that

,_ 1000 km satellite embryos are effective barriers, and will

capture most inwardly migrating satellitesimals, thus limiting

the amount of material that is allowed to spiral into the planet

or inner embryos.

As we will see in Paper II, we expect that satellites of

a sufficient size produce a feedback reaction on the gas disk

which stalls their inward migration. An even larger satellite

may open a gap in the subnebula. While satellite embryos

may have migrated as they grew to a size of 1000 km, once

they reached this size continued growth might have been fast

enough to avoid further inwards migration. The locations of

Ganymede and Titan, just inside the centrifugal radii for Jupiter

and Saturn, tend to make us think that these two satellites grew

sufficiently fast to avoid significant inward migration (because

of its slower accretion, Titan may have migrated more than

Ganymede despite Saturn's lower gas density). In general

though, satellites are likely to have drifted significantly before

the feedback reaction of the torque was large enough to stall

their inwards migration. In Paper I1 we use this to explain the

mass to distance relation of the Saturnian and Uranian satellite

systems.

In order to obtain an embryo size that becomes an effective

barrier for inwardly drifting satellitesimals a typical satellites-

imal mass rn_ was used. We now attempt to provide further

justification for this choice. As we mentioned before, one ex-

pects the dust and rubble scale-height eventually to decrease

due to the effects of coagulation and turbulence decay. We

consider a case such that the coagulation of dust produces par-

ticles that decouple from the gas in a timescale shorter than

103 years. First we find the characteristic particle size that

will decouple from the gas. Given our nebulaparameters and

using the condition Dts ,--, 1, we obtain a particle size _ 50 m

in the region between 15 - 20Rj. This particle settles to the

midplane and drifts in due to gas drag. As it does, it grows by

sweep up of smaller particles. Assuming a self-similar power

law distribution as in Weidenschiiling (1997), we use particles

of size _ 10 m as the feeder population where most of the

mass resides. We calculate the scale-height for these particles

under strongly turbulent conditions (or ,-., 10 -4 - 10 -3) using

equation (13) and obtain H t, ,-,, 0.04H (head-wind decreases

for lip < 0.01H such that the particle layer density _p > Pg).

For weak turbulence (a = 10 -6 - 10 -s) the scale-height

for the same feeder particle would be an order of magnitude
smaller.

We can now calculate the time it takes for a 50 m particle

at 20Rj to evolve to 15Rj and the size it will grow to by the

time it gets there. The size of the satellitesimal is given by

solving

drp Esc gl (a, t)
--, (16)

dt 8p, l_a a

where _ = Hp/H, and the initial size of the satellitesimals is

taken to be the size of the object such that Qt, ,-_ 1. The drift

velocity of this satellitesimal is

da 3Un_]c 3 a g2(a,t)
vd = -- = -- , (17)

dt 8p, GMe rp rp

We can decouple these equations by letting rp = g_/(da/dt)

and plugging this into (16). For the inner disk, the temperature
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varieslike1/r (whichimpliesgl,g2 o¢ a -a/z) so that the

position of the sateilitesimal as a function of time is given by

d2a 1 [ a 2 3] (da'_2= 1 A (da'_ 2dt 2 a 75C-D-_H 2 \ dt ] a \ dt ] '

(18)

Assuming that B is constant then A is constant and we can

solve this equation exactly to give the particle velocity as a

function of time

v(t) = v° [ l + (A-1)lv°]t]-Tr_r-_aoj (19)

where vo is the initial velocity of a satellitesimal of initial size

rpo. We can now integrate this equation for our subnebula

model to give an equation for time as a function of position

deplete inner portions of the disk (the extreme case of which

might be Saturn's system which has little mass inside of Ti-

tan). Second, the scenario discussed above leads one to the

view that satellites grew by accreting material outside of their

own orbit delivered to them by gas drag. Such a model can be

used to explain not just why Io and Europa are water deprived,

but also why Europa would turn out smaller than Io. Since the

feeding zones of the satellites grow with distance as their Hill

radius increases and Europa accreted some water one might

expect the reverse to be the case. In our model the growth of

a satellite depends on the growth of its outer neighbor. As a

result, one would expect a large satellite to be preceded by a

small one. That is, we believe Ganymede probably prevented

Europa from growing to Io size. In such a model it may not be

surprising to find that the object with the most mass accretes

close to the centrifugal radius (note that this is also true for

Saturn's satellite system). Outside this radius the gas density

decrease may lead to smaller satellites. Inside of this radius

the growth of the satellite may be limited by the growth of its

outer neighbor.

to - Ivol (A - 1) - 1 (20)

and finally the growth of the satellitesimal as a function of time

rp(t) = rpo [1 + (A- 1)]v°lt]aoj (21)

We find that for the case of strong turbulence a 50 m particle

will take to _ 0.2 years to drift between 20Rj and 15Ra and

it will grow to a size of ,-, 1 km, which may be a bit small to

be efficiently accreted by an embryo. However, for the case

of weak turbulence, growth occurs much more quickly. In

this case, the same particle grows to a size of _ 10 km in

,-_ 0.2 years after ,-- 1Rj of inward migration. Once satel-

litesimals have attained this size they are likely to get picked

up by embryos inside of their own orbit. While this model is

quite sensitive to the particle sizes chosen, it does point out

that particles that decouple from the gas and drift in are subject

to growth. This growth may be fast enough that most of these

particles will become satellitesimals with sizes > 1 km after

only a few Rj of inward migration, at which point they will

slow down and eventually get captured by a satellite embryo

inside their own orbit. Although uncertain, this calculation is

roughly consistent with the gas-free calculation of characteris-

tic satellitesimal sizes. This again points out that the minimum

mass model may indeed provide a fair estimate of the mass of

condensables initially present in the gas disk.

Several workers have pointed out that Safronov style ac-

cretion has difficulties explaining the masses of the Galilean

satellites (Coradini et al 1981; Richardson et al. 2000), but

these studies do not take into account the effects of gas drag.

We have shown that gas drag will play a major role in shaping

the properties of the Galilean satellites. First, gas drag might

5 Slow Formation of Callisto

Our model has Callisto forming from an extended, low optical

depth gas disk. Since the disk will quickly become isothermal

once grain coagulation leads to optical depth much less than

unity, we expect this gas disk to be largely quiescent with very

low gas viscosity. This means that the dust and rubble layer

will quickly settle down to the midplane within a scale-height

much smaller than the gas scale-height. The size of the dust

and rubble layer is determined by local shear turbulence close

to the midplane (Cuzzi et al. 1993).

First we calculate characteristic masses and lengths in

analogy to the planetary accretion problem (e.g. Ward 1996)

for the case in which the outer disk contains _ Moatlisto of

solids. At ,-, 50Rj with _ _ 53 gcm -2 and pa = 1.5 g

cm -s, we obtain ml ,-, 2.9 x 1014 g, which corresponds to

a satellitesimal radius of _ 0.36 km and 11 _ 13 kin. The

embryo size is ra2 -,_ 3.3 x 1023 g, which corresponds to a

embryo radius of ,-, 370 km and 12 ,,, 1.4 x 104 kin.

If we perform the same calculations further out at --,
100Rj with _ _ 26 g cm -2, we obtain rnl _ 2.3 × 1015 g

which corresponds to a satellitesimal radius of --, 0.72 km

and !1 --_ 53 km. The embryo size is m2 ,-, 9.2 x 102a g

which corresponds to a embryo radius of ,,_ 530 km and

12 --, 3.9 x 104 km. These characteristic masses are about

an order of magnitude smaller than the masses we obtained at

15R._ for m2 and two orders of magnitude smaller for ml.

Given the low scale-height of the particle layer similar size

embryos form quickly. Hence in this case it may not be a bad

assumption to consider growth timescales in a case such that
the solids in the disk are in the form of satellitesimals. For the

outer disk the Safronov accretion time is given by:
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Ps r, (lOgcru-_'_
r_-iOS(lg_m_Z)(_)\ Z, )x

a

(22)

Using a density of solids in the outer disk E, --, 10 g cm -2

and enhancement factor F a ,_ O(1), this formula predicts that

an embryo with p, = 1.5 g cm- a and size _ 500 km would be

formed in ,--, 106 years at 150Rj. Several factors can alter this

growth timescale. Larger values of the enhancement factor

can speed up the growth of large objects in the outer disk.

However, even though the Hill radius of an embryo is much

larger than its physical radius, the low density of embryos leads

to infrequent collisions and velocity dispersions comparable

to the escape velocity of the embryos (see Appendix A). As a

result, the focusing factor is unlikely to be much larger than

one. On the other hand, embryo collisions do not necessarily

lead to accretion. Glancing collisions may not lead to sticking

or may yield embryo spins resulting in ejection. Furthermore,

collisional disruption of embryos > 100 km can decrease the

efficiency of the growth process (see Appendix B). Finally, the

above estimate was obtained assuming that all of Callisto was

spread out to 150Rj. Placing a fraction of Callisto's mass

would lead to longer embryo growth times. Placing a fraction

of Cailisto's mass in the outer disk would lead to longer embryo

growth times, but then Callisto may differentiate. From this

we conclude that embryos with sizes < 500 km may be formed

in a timescale of _ 106 years at ,-_ 100Rj.

To find the characteristic sizes of outer disk embryos in
the presence of gas drag we turn to drift augmented accretion.

In the absence of global turbulence, we make the assumption

that local turbulence due to the gas-dust shear layer close to the

subnebula midplane will adjust itself to maintain rough parity
such that _p _ P9 (Cuzzi et al. 1993). This approximate

relation can be used to estimate Hp. Alternatively, we can
write

Hp = Cv _-_-_-_, (23)

where CT ,_ 0.01 is a constant (Cuzzi et ai. 1993). The scale

height is Hp ,_ 0.01H for particle of size ,-_ 10 cm. As we did

in the case of Ganymede, we now calculate the sweep up time

for a particle with radius rp. We find r,_,,p -_ 5.5(rp/1 km)

years at 50Rj and r,_o,_, ,_ 22(rp/1 km) years at 100Rj.

These growth timescales are ~ 50 times faster than the drift

times in the presence of gas drag and gas tidal torque for any

given object size (see Figure 5b).

The above sweep up times do assume that the dust and rub-

ble surface density stays constant. Once the sweep up growth

slows down due to dust and rubble depletion, continued em-

bryo growth will depend on the drift augmented accretion of

satellitesimals. As we did for the inner disk, we now ask what

size embryo stands a significant chance of capturing satel-

litesimals of characteristic size mz drifting into its feeding
zone. We choose the criterion st = la as we did before, and

find the characteristic quantities m,t --- 2 x 1024 g, which

corresponds to an embryo size of 690 km (for Ps = 1.5 g

cm-a), and st -._ 4.8 x 104 km at 50Rj. At 100Ra we get

ma _ 1.2 x 1024 g, corresponding to a radius of 580 km, and

st ,-, 8 x 104 km. A wrinkle results from the small scale-

height and long drag times inherent in this problem. If we

calculate how long it took satellitesimal rnz to cross a distance

ld we find ta ,'.-, 3 years at 50Rj and td "_ 10 years at 100Rj.

This timescaie is sufficiently long to allow some satellitesimal

growth during the time it takes to cross the embryo's feeding

zone. Taking this effect into account the corrected embryo

sizes turn out to be slightly smaller 590 km at 50Rj and

540 km at 100Rj.

The first thing to notice is that the smaller embryo mass

now corresponds to the larger semi-major axis. This is because

the larger value for rut at 100Ra led to longer timescales to

cross the feeding zone, thus requiring a smaller embryo size

to satisfy our capture condition. Even though the smaller

embryo size now occurs further out, the decrease in size is not

sufficient to compensate for the decrease in gas surface density.

The result is that inner embryos will drag in first and drift

augmented growth will stop (the small scale-height means that

all the dust and rubble will quickly become depleted). Thus in

our model 500 km represents the characteristic size that form

before drifting in to Callisto's radial location. It is important to

point out that this characteristic size decreases significantly if

one considers disks of higher solid concentration (higher solid

concentration disks may be desirable for several reasons; see

also Paper II). For instance, if we keep the surface density of

solids constant but decrease the gas density by a factor of 4

we obtain md _ 1.4 x 102a g, which corresponds to a size of
280 km at 100Ra.

As before, we need to address the issue of the capture

efficiency. For the outer disk, the gas density is too low and

the mass of the satellitesimals too high to avoid being captured

into resonances if initially placed in low eccentricity orbits.

However, proto-Callisto may not have captured objects into

resonance because the typical (for embryo sizes in the range

100 - 500 km) embryo eccentricities near Callisto's orbital lo-

cation are given by e _ 0.02 - 0.07, where we have assumed

that the random velocities are on the same order as their es-

cape velocities (Appendix A). These eccentricities are similar

or larger than the critical eccentricity for which capture prob-

ability sharply drops off ecri_ '_" r/_ 0.03 (Malhotra 1993).

Hence, for low gas surface densities typical satellitesimal ec-

centricities may again lead to low probability of resonance

capture. We have already pointed out that in the inner disk

the gas drag may be too strong for resonant capture of a satel-

litesimal by an embryo. It is possible this leaves the transition

region as the only place where resonant capture probability is

significant (see Section 6.2).

Having established that resonant capture is unlikely to take

place, we ask what fraction of the population of objects that
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driftintoCallisto'sfeedingzonewillbeaccretedbyit. In
thecaseofCallisto,thesynodictimescaleismuchshorter
thanthedrifttimeacrossthefeedingzoneofthepopulation
offeeders.Inthisweakgasregime,theaccretionefficiency
is limitedbytheinclinationsof thedriftingsatellitesimals.
Typical inclinations for such objects are smaller than their

eccentricities (see Appendix A). In the neighborhood of Cal-

listo ix = ia/H ,,_ 0.06 - 0.26 (for embryos in the range

100 - 500 km). Given that for Callisto rs/rtt = 0.048, we

can use the simulations in Kary et al. (1993) (their Figure

12) to estimate the accretion probability at 0.7 - 0.8. Hence

Callisto will capture most of the satellitesimals that drift into

its feeding zone (this argument also applies to proto-Callisto

nearly unchanged).

We can now calculate the time it takes to accrete Callisto

by the time it takes gas drag to clear the outer disk of such

embryos. Such a calculation yields an accretion timescale for

Callisto of 105 - 106 years. This is calculated under the con-

servative condition that the gas density in the outer disk does

not decrease over time. Since we expect that the assumed con-

centration of solids in the disk is if anything somewhat lower

than the actual concentration (see Paper II), which would lead

to longer accretion timescales. For instance, a concentration

factor of 4 would lead to embryo sizes -,_ 300 km, which

would take 2 x 106 years to drift in from 150Rj to Callisto's

radial location (this timescale was obtained by integrating Eq.

[17] with Ps = 1.5 g cm-a). We give ,_ 106 years as the

clearingtime for the outer disk. Since this timescale is signif-

icantly shorter than the gas dissipation timescale (taken to be

10 r years), no embryos would be stranded outside of Callisto.

The upshot is that Callisto's accretion timescale differs

significantly from that of Ganymede because Callisto must

draw materials from much further out _ 150Rj (compared

to 23Rj for Ganymede). To complete its accretion it must

contend with the drag times of embryos. Since the gas den-

sity is much lower in the outer disk, the distances larger, and

the dynamical times longer, the resulting accretion timescale

for Callisto accretion will be much longer (,-_ 106 years) than

it was for Ganymede (,-, 103 - 104 years). It also possi-

ble that particulate matter coupled to gas flowing through the

gap after gap-opening lengthens Callisto's accretion timescale

but not that of Ganymede. The reason for this is that once

Jupiter accretes most of its mass the specific angular momen-

tum of gas flowing into its Roche-lobe is high enough to take

this gas into radial locations outside the centrifugal radius.

Proper accounting of the angular momentum budget of this

gas component needs to include the torque of the Sun on the

gas flowing into Jupiter. Given that a satellite collects most

of the material outside its own orbit, Callisto is more likely to

derive solids from this component than Ganymede. However,

since at these late times most of the mass is likely to be in

the form of planetesimals (Weidenschilling 1997) it is unclear

whether this component can contribute a significant fraction of

Callisto's mass. Yet another possible difference between the

two satellites is that while Callisto is likely to have accreted

homogeneously the same may not be true for Ganymede. The
reason for this is that in the case of Callisto the satellite for-

mation time is considerably longer than the disk cooling time

at its location, whereas for Ganymede the two timescales are

comparable. This difference could have played a significant

role in the final structure of the two satellites.

The question arises whether even a million year accretion

timescale is slow enough for the heat that gets buried as a re-

sult of the impacts with such large objects to be removed in

time to avoid deep melting and runaway differentiation. More

work will need to be camed out to check into this possibility.

Here we simply point out a few factors that need to be taken

into consideration. First, our impacts take place at the escape

velocity of proto-Callisto. Hence heat gets buried only at the

late stages of the accretion process. Second, such impacts bury

heat but also upturn the upper layers of the satellite, thus lead-

ing to faster cooling times. Third, greater solid concentrations

would lead to longer accretion times and smaller impactor

sizes (the value for m,t decreases with slower drift rates). An

object 300-500 km in radius impacting at the escape velocity

could produce a layer of water tens of kilometers in depth if

all of the energy is placed into the melting process. However,

this calculation does not constrain how deep such an impact

would penetrate the surface. Conservative estimates based on

computations and experiments give depths roughly the radius

of the impactor in this energy regime (Melosh 1989), taking

into account the material displaced as well as excavated. Ex-

cavation depths would most likely be a considerable factor less

than this, perhaps _ r,/3 (Mel0sh 1989). Thus, even an ob-

ject as large as 500 km may be consistent with recent findings

concerning the depth of clean ice on Callisto (Anderson et al.

2001). Pending further work, we conclude that that our model

may lead to the accretion of a partially differentiated Callisto.

Such an accretion model can also account for the pref-

erential retention of ices more volatile than water in Callisto

compared to Ganymede, and for the large angular momentum

stored in Callisto, which is only a small fraction of the angular

momentum that was initially present in the extended disk of

solids out of which it was accreted. Furthermore, our accretion

model makes Callisto in regions of the gas disk that are not

connected with high-optical depth regions where the temper-

ature and density might have led to the production of reduced

ices such as methane and ammonia. As a result, we would ex-

pect that Callisto is made of solar nebula composition, which

contains mostly oxidized ices (though methane is present in

many solar system objects).

It is natural to ask how sensitive are these calculations to

the size of the disk. It turns out that the characteristic size of the

embryos does not change much with disk size. This is because

of the countering effects of the increase in Hill radius with

semi-major axis and the decrease in surface density. A smaller

disk size would yield similar embryo sizes which would take

a slightly shorter time to evolve to Callisto. A larger disk can

also be considered, but in that case one would need to explain

why the irregular satellites were not dragged into the planet.
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6 Saturn's Regular Satellite System

In order to apply our model to Saturn we first need to constrain

the nebula parameters for Saturn as we did for Jupiter. First,

we note that the ratio of the reconstituted Galilean satellite

masses to the Saturnian satellite masses is _ 3.7. On the

other hand, the ratio of the atmospheric envelopes of Jupiter

to Saturn is ,._ 3.7 for giant planet core masses of _ 12 Earth

masses, consistent with nominal values.

The above arguments apply to the inner disk where most

of the mass resides. We now attempt to estimate the amount

of gas present in the outer disk of Saturn. It must be kept in

mind that the history of Saturn might have been substantially

different from that of Jupiter. Nevertheless, it is instructive to

apply the same sort of gap opening argument to Saturn as we

applied to Jupiter. Using the torque of Saturn on its feeding

zone (Eq. [1]) and assuming A _ 0.13as > Hs, where Hs is

the thickness of the solar nebula at Saturn (which is marginally

satisfied), we find_'TS"v ,_ 3.5r_a_. Then the total mass in the
disk is given by M_i,k ,-, Msr_,p/rdcc _ Mji_krg_cc/r, cc.

S J d S

The resulting disk mass ratio is likely to be substantially less

than the 3.7 we are using for the inner disk. However, this

calculation is substantially uncertain. For one, it is unclear if

the concept of gap-opening applies to Saturn at all. As a result,

we will use two models. The first model simply assumes the

same mass ratio to the Jovian system. The second model puts

just enough mass between 6ORs and 200Rs to make lapetus

(since Iapetus is made of ice the minimum mass model requires

a subnebula of _ 200M_pet_). This is in rough agreement

with a model that makes Saturn in 10 _ years. These two

models are shown in Figure 2.

We get a disk size of _ 22ORs by scaling the outer disk

of Jupiter (,-_ I$0Rj) by the ratio of the Hill radii of Saturn

and Jupiter. It is encouraging to note that Phoebe is located

at 215Rj. This object has a retrograde orbit of high inclina-

tion and eccentricity, leaving little doubt that it was captured.

Therefore, we adjust the size of Saturn's outer disk slightly to

200Rs to fit in with the location of Phoebe. As was the

case with the irregular satellites of Jupiter, we use gas drag

to explain the absence of captured objects inside the orbit of

Phoebe (though a couple of small irregulars have been found

just inside of Phoebe). This scenario fits well with the capture

theory of Pollack et al. (1979), in which Phoebe was captured

as it passed through the envelope of proto-Saturn, and was left

stranded by the subsequent collapse of the envelope.

To constrain the temperature of the Saturnian subnebula

we simply assume that the accretion of methane ice explains

the methane in Titan's atmosphere (Lewis 1972). That sets

a temperature of _ 100 K at 2ORs. Inside this location the

subnebula is taken to be optically thick and the temperature

to vary inversely with radius. In Figure 3, we have plotted

the subnebula temperature as a function of distance in units of

the planetary radius. For times _ 106 years after accretion,

the planet has had a chance to cool and we simply assume

a constant temperature everywhere equal to the solar nebula

temperature at the location of Saturn _ 90 K.
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Figure 6a: (a) Orbital decay times of satellitesimals of var-

ious sizes due to gas drag and gas tidal torque at 2ORs. The

gas surface density for our models is indicated in the plot for

this radial location. The decay times of smaller objects is

dominated by gas drag, while larger objects are controlled

by gas tidal torque with the transition between 500-1000 kin.

(b) Orbital decay times of satellitesimals of various sizes due

to gas drag and gas tidal torque at 70Rj.

As we did before in the case of Jupiter, we calculate char-

acteristic masses based on the planetary accretion model. In

Saturn's inner disk at ,--, 2ORs with _ -,., 900 g cm -_ and

p_ = 1.5 g cm -a, we obtain m_ _ 2.9 x 10 _6 g which corre-

sponds to a satellitesimal radius of _ 1.7 km and l_ _ 30 km.
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Theembryosizeism2 ,-_ 1.8 x 1024 g which corresponds to

a embryo radius of _ 660 km and 12 _ 1.2 x 104 km.

In Figure 6a, we plot the orbital decay times at 2ORs as

a function of the surface gas density for several particle sizes.

As one would expect, even for the same surface density these

evolution times are generally longer than those we calculated

for the case of Ganymede. The reason for this is simply that

the orbital period at Titan is longer than the orbital period at

Ganymede. If we add to this the fact that the surface density

of Saturn is lower than that of Jupiter (See Figure 2) because

Saturn's disk is 3.7 times less massive and also more spread out

(Saturn's Hill radius is larger), we end up with evolution times

in Saturn's disk that are generally about an order of magnitude

longer than the corresponding evolution times in Jupiter's disk.

It is instructive to write the drag times at Saturn as

Tga , _ 13 i gcm_3

lO s g cm-2E ) years.

(24)

Now we turn to the process of forming satellites by the

same method as we used in the case of Jupiter. First we build

up embryos using sweep up of dust and rubble. The timescale

for this process 'at Saturn is

( ) ()p, rio a

(25)

this is. Furthermore, while weaker turbulence may speed up

the formation of satellite embryos, it may actually slow down
the formation of full size satellites. This is because satellites

complete their accretion by drift of satellitesimals, which are

bigger and drift slower in the case of weak turbulence. Hence

weaker turbulence may actually lower the chances of satellite

survival for two reasons. First, because weaker turbulence

means that the gas surface density remains close to its original

value (see Paper If). Second, because weaker turbulence may

lead to longer satellite accretion times. In any event, there are

a number of alternative explanations for the absence of large

Saturnian satellites inside Titan (see Paper II).

Now we calculate the size of an embryo that will be effec-

tive at capturing satellitesimals of mass rnl drifting across its

feeding zone. At Titan we find rna ,_ 3.5 x 1024, which corre-

sponds to ,-, 820 km (compared to ,-, 1500 km at Ganymede),

and a feeding zone of ia _ 2.9 x 104 km. It took an ml

satellitesimal 0.6 years (compared to 0.22 years at Ganymede)

to cross the embryo's feeding zone For Hp = H, it will take
1.3 x 104 years to build an embryo of size ,-_ 820 km (com-

pared with _ 2700 years at Ganymede to form an embryo of

size _ 1500 km). Decreasing the gas density by a factor of 4

leads to an embryo size of _ 410 km (compared to 760 km

for the same solid concentration factor for Ganymede). How-

ever, such small embryos may be vulnerable to breakup by

hypervelocity impacts.

Given that the satellite formation time is the embryo ac-

cretion time plus the drift accretion time of embryos, we

obtain a time of 104 - 105 years for Titan (compared with

10 s - 104 years for Ganymede).

6.1 Formation of lapetus

We see that making a 1000 km embryo would take ,-, 104Hp/H

years at Titan, or about ten times longer than it took at Ganymede.

Allowing H_, < H, the sweep up timescale is always shorter

than the drag timescale for a < 22Rs. Beyond this dis-

tance our model has an optically thin, quiescent disk with

Hn << H. Therefore, in general, T_,eep < Tga_. In the in-

ner disk (inside of 2ORs, T = 100 K), where the temperature

is inversely proportional to the radial location, the ratio of the

sweep up time to the gas drag time is independent of semi-

major-axis and particle size Tsweep/Tga$ _ Hp/H. Since

the sweep up times for Saturn are about an order of magni-

tude longer than for Jupiter, for Saturn there is an increased

likelihood that bombardment from outside the Roche-lobe dis-

rupted embryo growth. Furthermore, characteristic embryo

sizes < 1000 km are significantly smaller for Saturn's disk. It

seems likely that more embryos were lost in the case of Saturn,

which might explain the absence of large satellites inside of

Titan's orbital radius where collisional events might have been

energetic enough to breakup satellite embryos (Greenberg et al.

1977). It must be mentioned, however, that weaker turbulence

for Saturn than Jupiter might change this conclusion. Never-

theless, a simple model yields similar turbulent viscosities for

Saturn and Jupiter (see Figure 4) so it is unclear how important

It should be clear by now that we view lapetus as an analog to

Callisto in the sense that it formed on a long timescale from

the materials in the outer disk of its primary. In this regard,

it is intriguing to note that some of the surface features in

Iapetus, such as Cassini Regio, might have a similar coating

as Callisto (Denk et al. 1999). Aside from its size, there is

one way, however, in which lapetus is markedly different from

Callisto; namely, its low density _ 1.0 g cm -3. This low

density makes it unlikely that the dark, reddish material that

can be seen on lapetus was directly incorporated from the solar

nebula. Though such material is a component of many bodies

in the outer solar system, direct accretion would have led to a

larger density for this object (McKirmon 1999). We speculate

that the reason for the low density of lapetus is that for the

low gas density of Saturn's envelope the source of the material

in Saturn's outer disk came from the ablation of water and

methane ice of infalling planetesimals and/or most of the dust

settled deeper in before the disk was formed. If so, assuming

cosmic mixture for the outer disk may not be valid in this

case. Still, the uncertainty in the model leads us to continue to

use it (but note that the minimum mass subnebula model has

200M1_net,,_ in the outer disk).

The timescale for formation of lapetus varies significantly
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dependingonthe specific model chosen for the surface density

in Saturn's outer disk. For the sake of specificity, here we

choose the model that yields enough condensables for just one

Iapetus mass from 6ORs to 200Rs (see Figure 2).

As has been done before we first calculate the character-

istic masses (for the dashed curve in Figure 2, lapetus model).

In Saturn's outer disk at _ 7ORs with E_ _ 1.3 g cm -2 and

ps = 1 g cm -3 (which is the density of lapetus), we obtain

ml _ 1.3 x 1011 g, which corresponds to a satellitesimal

radius of _ 0.03 km and 11 '_ 1.8 km. The embryo size is

m2 _ 3.7 x 1021 g, which corresponds to a embryo radius of

,-, 96 km and 12 ,-, 5.5 x 103 km.

At this location the size of an embryo that will capture

a significant fraction of the satellitesimals of mass rnl that

drift by is md', 1.6 X 10 _4 g, which corresponds to a radius

of ,'_ 720 km and ld _ 7.8 X 104 km. As was the case

with Callisto, however, the satellitesimal will grow due to

rubble and dust sweep up as it crosses the embryo's feeding

zone (assuming tSp _ Pg). Therefore, the above estimates

need to be corrected to take into account that the drift times

increase as the satellitesimal grows. Then we obtain md

1.2 × 1024 g, which corresponds to a radius of _ 670 km and

la _ 7.2 x 104 km. Assuming/Sp _ pg, it will take about

3.4 x 10 _ years to grow an embryo of that size by dust and

rubble sweep-up at that location. It is interesting to note that

ms << md< Mlapetus. A model with 4 times less gas

density leads to an embryo size of--, 350 km at lapetus.

To complete the accretion of lapetus we need to accumu-

late several embryos. Since the timescale for drift of a 500 km

embryo at Iapetus' location is 106 - l0 T years (see Figure 6b),

we take this value to be the formation timescale for Iapetus.

6.2 Formation of Hyperion

The origin of Hyperion in the 4:3 mean-motion resonance with

Titan presents a significant challenge. A tidal origin of res-

onance capture as may apply to Galilean satellites (Malhotra

and Dermott 1990) seems unlikely to apply to the case of Titan

and Hyperion. Given Titan's size and distance from Saturn,

significant expansion of its orbit would require Saturn's dissi-

pation parameter Q to be much lower than the lower limit set

by the proximity of Mimas. Lee and Peale (2000) concluded

that Hyperion could have formed with its present orbital prop-

erties from the accretion of satellitesimals in a 4:3 resonance

provided that (a) there was a steep gradient (oc r -s) of disk

and particles densities, (b) Titan grew to its present size and

eccentricity on a timescale of 104 - l0 s years, and (c) no

particles are added to the outside of the disk. Given that our

model puts Hyperion in the transition region of the gaseous

disk where one would naturally expect steep density gradients

(i.e. the steep density gradient would result from the edge of

the inner disk, not from global disk properties), we find that

Lee and Peale's model requirements agree very well with our

general satellite formation scenario. We note that these authors

found gas drag to be necessary in order to induce satellitesimal

orbital decay and capture into resonance.

It might appear that condition (c) is inconsistent with our

model but we argue otherwise. Particles from the outer, low

density disk would start arriving well after Hyperion's accre-

tion was already complete, and would be composed of a sparse

population of rather sizeable objects (tens to hundreds of kilo-

meters). Whether this can account for the Hyperion's irregular

shape we defer for future study.

We now check to see whether proto-Titan may capture

satellitesimals into resonance in the gas regime corresponding

to its accretion. The threshold mass such that proto-Titan can

halt the inward migration of a satellitesimal in the vicinity of

aj + 1 : j resonance is given by (Malhotra 1993)

\ ](Ms _ = 2 j(ja+ l) (rlvKrua.)_ 1 (26)
]_TH = _ TH Cad

where Ms is the mass of the satellite, Mp is the mass of the

planet, and C,_d = C'_d/(1 + Tile °) < 3.3 is a numerical

constant. As in Malhotra (1993), we make the assumption

that in the strongly damped regime the quantity (1 + g/e*) is

roughly constant with forced eccentricity e ° _ r/. In terms of

our model parameters, the threshold mass can be written as

1/2

(9--_K) (lr-_)(10s g-cm -2 )

(27)

which yields #TH -_ 3.5 x 10 -4 for a I km object for the 4:3

resonance with Titan located at Hyperion (24.5Rs), which is

near the inner edge of the transition region. Given that Titan

satisfies this condition it appears that Hyperion may indeed

have been captured in the presence of gas drag. It is possible

that Titan migrated inwards over its history. This would place

the 4:3 resonance in regions of lower gas density, thus allowing

for lower threshold masses. Allowing for a factor of 3 - 4 less

gas also makes it easier for proto-Titan to capture Hyperion

into resonance. Hence Hyperion could well be the result of

the accretion of satellitesimals in resonance by proto-Titan as

Lee and Peale (2000) have suggested.

For Jupiter we can write

2.3 x 10_s (Igc__m_3_ ( a _1/2l--,,- S-(jYV) p, / ×

_] \ rp ]

(28)

which yields IJTlt "" 1.6 x 10 -a for a 1 km object for the

4:3 resonance with Ganymede located at 18Rj. This may

indicate that Ganymede did not capture a satellite in resonance

because it was not massive enough to stop the inward drag

of satellitesimals outside its orbit. However, given that it is
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possible to argue in favor of increased solid concentrations, it

remains a possibility that Ganymede accreted satellitesimals

in resonance which were subsequently lost due to collisions or
unstable orbits.

6.3 Formation of Satellites inside of Titan

The first thing to note about the satellites inside of Titan is that

by mass they constitute only --, 3 % of the total mass of the

satellite system. The second thing is that they have low den-

sities (Tethys, Enceladus and Mimas have densities consistent

with almost all ice, while Rhea is mostly ice [see Table I1])

with the sole exception of Dione (p, _ 1.5 g cm-a). The

higher density for Dione may reflect a rockier composition or

some endogenic process (as evidenced by the observed resur-

facing on this satellite but not Rhea) such as cryovolcanism

that can close "pores" and lead to larger bulk density. Other

factors, such as under-dense ice and the effects of impacts may

mar a straightforward interpretation of satellite densities based

on composition alone. Nevertheless, it seems likely that as a

group these satellites are mostly made of ice. It is also im-

portant to note that there is a large gap between the outermost

satellite in this group (Rhea at 8.7Rs) and Titan (at 20Rs).

Lastly, and perhaps most importantly, all large Saturnian satel-

lites (with the sole exception of lapetus) appear to he sorted

according to size, with the smaller satellites further in. We

consider this sequence to he significant. We will return to this

issue in Paper I1.

We expect that these satellites accreted in the presence of

significantly less gas than did Titan (E ,-,, 104 g cm-2; see

Paper II) about 105 years after the end of Saturn's accretion,

once the planet cooled enough for water condensation inside

the orbit Rhea to take place. Despite their small size, we

estimate it took 104 - 105 years to accrete these objects.

7 Uranian Satellite System

As we did in the case of Saturn, we begin our discussion of

the satellite system of Uranus by noting that here, too, the

ratio of masses of the atmospheric envelopes of the primary

are roughly consistent with the ratio of masses of the satellite

systems. Assuming Saturn to have a ,--, 15 Earth mass core

and Uranus a smaller ,--, 10 Earth mass core, the mass ratio of

the envelopes for the two planets is _ 18. While substantially

uncertain, this value compares favorably with the mass ratio

of the satellite systems of the two planets ,'_ 15.

All the regular satellites of Uranus are all well inside

Uranus' centrifugal radius located at --, 57Rv. The irregu-

lar satellites Caliban and Stephano are found at 280Rv and

309Rv, or approximately/Loch_/10. Inside the centrifugal

radius, the main satellites of Uranus are Oberon (at 22Rv),

Titania (at 17Ru), Umbriel (at 10Rv), Ariel (at 7Ru), and

Miranda (at 4.9Rtr). As before, it is more meaningful here

to establish correspondences between satellites not in terms of

planetary radii but in terms of the Hill radius of the planet (see

Figure 1). Scaled by the Hill radius of the primary, the location

of Oberon corresponds closely to the location of Rhea in Sat-

urn's satellite system. Moreover, the size of Oberon (760 kin)

is quite similar to the size of Rhea (764 km; though Oberon is

denser). Furthermore, there is evidence in the Uranian system

of sorting according to size as there is in the Saturnian system.

The main difference between the two families of objects is

that Saturn's inner satellites are considerably less dense (pre-

sumably icier) than Uranus' regular satellites. In fact, of the

Uranian satellites only Miranda has a density (1.2 g cm -a)

consistent with a object made mostly of ice. It is indeed re-

markable that here, too, there is evidence of endogenic activity.

It has been suggested that the satellites of Uranus may

have been the byproduct of the impact event that led to its

present obliquity (e.g., Pollack et al. 1991). However, such

a process is unlikely to lead to a sufficiently extended particle

disk to produce satellites as far as 22Rv (Canup and Ward

2000). Furthermore, the evidence for systematic increases in

density and size (see Figure 1) for these satellites is hard to

reconcile with an impact origin. Instead, we choose to follow

the same general outline to form the satellites of Uranus as we

applied to the formation of the regular satellites of Saturn and

Jupiter.

A minimum mass model in which the gas disk extends out

to the centrifugal radius of the planet at 57Rtr would set the

average gas density at 1.4 x 104 g cm -2. This is quite close

to the surface gas density at which the disk becomes optically

thin (given gas opacity). In this case, the temperature gradient

in the subnebula may not have been sufficiently strong to drive

turbulence. So we would expect a cool, largely quiescent disk

with gas surface density of --, 104 g cm -2 as the environment

in which the Uranian satellites accreted. This is very similar

to the environment we hypothesize led to the inner Saturnian

moons (see also Paper II).

In the inner disk, we interpret the gap between the lo-

cation of the centrifugal radius and the innermost satellite as

suggestive of significant satellite migration. In the outer disk,

the presence of irregular satellites much closer to the centrifu-

gal radius than is the case for the Jupiter and Saturn satellite

systems indicates to us that the outer disk of Uranus did not

have enough mass to lead to the formation of regular satellite

outside of the centrifugal radius (see also Paper II).

8 Starved Disk Model

A scenario in which the giant planet satellites accrete from a

disk produced through the direct infall of gas and solids from
a heliocentric orbit has numerous issues to overcome before it

can offer an alternative to the model presented here. We list

and discuss a few of the outstanding ones, and we leave the

development of such a model (if viable) for later work.

The main reason why such a model may be desirable is

because it introduces a longer timescale for the formation of

the satellites, namely one controlled by the infall of materials

from the Roche-lobe. In particular, a "starved" disk might
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be used to capture Sun-orbiting planetesimals leading to long

assembly times for all the satellites (,-_ 10 _ years) despite the

short accumulation times of the material in the circumplane-

tary disk _ 102 years (Stevenson, personal communication).

Because no detailed model of satellite formation in a starved

disk scenario has been advanced, we simply discuss some of

the issues that any such model has to contend with.

First and foremost is the issue of satellite survival. Recent

numerical simulations show that opening a gap does not nec-

essarily terminate accretion of gas onto the planet (Lubow et.

al. 1999). While at first glance this result may seem welcome

news for a model that has the satellite system form after gap

opening, it has long been recognized that gas drag (e.g. Lu-

nine and Stevenson 1982) makes long term satellite survival

in the presence of gas a significant issue. This problem is

compounded if one insists in making all the satellites slowly.

Doing so deprives this model of the stalling mechanism due

to the feedback reaction of the disk that we use (see Paper

1I) to allow for long term survival. The proto-satellite would

never grow to a size that would allow it to stall in the gas disk

since it would first drift into the planet. One can postulate the

presence of satellite seeds with enough mass to have stalled,

but this simply postpones the problem to one of either seed

capture or formation. The intrinsic difficulty of any model that

relies on the infall of gas after planetary accretion to make the

satellite system on a long timescale is that it retains the gas

around for a long time.

The alternative is a gas-free accretion model. However,

such a model may be difficult to justify. Aside from gas flowing

through the gap, another factor contributing to the difficulty

of ridding the subnebula of gas is the likelihood that the gas

turbulence dies clown as the gas becomes optically thin and

the planet cools. Hence it is unlikely that gas turbulence alone

can lower the gas density in the disk below the value at which

the gaseous optical depth is of order unity (unless small dust

particles are kept around for a long time, which presents a

problem in light of the short coagulation timescales). Also,

the locations of the irregular satellites argues for a sharp cut-off

in the gas surface density far from the planet. Such a sharp

cut-off is inconsistent with strong gas viscosity at that location.

Thus, the gas component may stay around until it dissipates

due to photodissociation. Furthermore, there are numerous

observational reasons why the presence of gas is desirable.

We have already touched on a few in this paper, such as the

sizes of the Galilean satellites, the capture of Hyperion into

resonance, the presence of captured objects at large distances

but not closer in, the absence of small satellites far from the

planet, and the parity between the mass ratio of atmospheric

envelopes of the giant planets and the ratio of mass in their

satellite systems; we will follow up on this issue in Paper II.

There is also the issue of the source of the solids. The flow

of gas through the gap does not imply flow of solids, since

by this time aggregation models (Weidenschilling 1997) lead

to mass distributions such that most of the mass of solids is

located in objects > 10 km. That is, only a tiny fraction of

the mass arriving at Jupiter millions of years after its accretion

would be in the form of particulate matter coupled to the gas

flowing through the gap. To derive a sufficient amount of such

material would require large amounts of gas to flow through,

which would make survival of satellitesimals problematic. On

the other hand, large planetesimals would not be coupled to

the gas, and their dynamics have to be followed independently.

Mosqueira et al. (2000) considered Rocbe-lobe feeding

of satellitesimals in tandem with the formation of the regular

satellites. To that end, they adapted a symplectic code to treat

satellite accretion simultaneously with the feeding of satel-

litesimals into the planetary environment. The issue arises as

to how to capture infalling planetesimals. True capture re-

quires close interaction with material bound in orbit around

the planet (which, in a starved disk model, is insufficient to

give rise to the observed satellite systems). Even if enough

mass were captured to make the satellite systems, this would

not guarantee that this mass would end up in the satellite sys-

terns. One must make sure not to send most of that material

into Jupiter. That is, the disk has to be sufficiently starved to

lead to a long formation timescale but its surface density can-

not be so low as to decrease the disk capture rate below that

of Jupiter (it must be remembered that Jupiter's capture cross

section is larger than the planet's physical cross-section). On

the other hand, the number density of late arriving planetesi-

mals may not be so high as to send too many planetesimals into

the Oort cloud. Thus, such a scenario must be very carefully

tuned. Perhaps more importantly, since planetesimals in the

outer solar system scatter in million years timescales (Glad-

man et al. 1990), it must be shown that there would be enough

planetesimals arriving a million years after the formation of

Jupiter to make the Galilean satellites on a long timescale,

and still avoid hypervelocity impacts by large planetesimals

which might differentiate or even destroy proto-Callisto and

breakup all the satellites close to the giant planets. While the

delivery of material from the solar nebula to Jupiter proba-

bly lasted several million years (Wuchteri et al. 2000) the

amount of material amving late is still a small fraction of the

total. On a related issue, the late arriving material after the

depletion of the nebula gas has been proposed to explain the

large core of Neptune (Lissauer et al. 1995), but recent work

indicates that planetesimals outside of proto-Neptune's feed-

ing zone may evolve along with the planet's orbit and prevent

them from colliding with it (Ida et al. 2000). While very little

material remains exterior to Neptune the issue that concerns

us here is the timescale over which this region was cleared of

planetesimals.

In addition, lengthening the formation time of the satel-

lites creates a significant problem in that it exposes the proto-

satellites to prolonged bombardment from the Roche-lobe, thus

substantially decreasing the chances that they will survive.

This is particularly problematic for Jupiter, where the velocity

of incoming projectiles may be enough to shatter objects as

large as --_ 1000 km (Greenberg et al. 1977). It is easy to

see, then, that forming satellites slowly, out of the mass ar-

riving directly from the Roche-lobe on ballistic orbits may be

more likely to destroy than to form satellites. Recall that in

our model most satellites (particularly those close to Jupiter)
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form quickly, and grow large enough to survive even large

impacts (even Callisto grows quickly to embryo size). As a re-

sult, a starved disk model may have trouble forming satellites

anywhere.

The angular momentum of the satellite system also presents

a serious problem to a starved disk model, where most of the

mass fed into the system comes in the form of satellitesimals

that are not coupled to the gas. Because a swarm of planetesi-

mals is likely to have small net angular momentum with respect

to the protoplanet, it is difficult to see how such a swarm can

lead to the formation of satellites. Even assuming that satel-

litesimals are preferentially fed from the outer regions of the

solar nebula, one would still be faced with a difficulty avoid-

ing loss of angular momentum during satellite formation (one

might even expect preferential capture of retrograde objects as

is the case for the irregular satellites). Here again, the long

timescale of formation aggravates the situation. This is of par-

ticular concern because Jupiter and Saturn both have satellites

well outside the centrifugal radius. In our model, the angular

momentum of Callisto and Iapetus is ultimately the result of

the torque of the Sun on gas flowing into the giant planet from

the Roche-lobe. Since the starved disk is fed mostly by large

planetesimals uncoupled to the gas, the Sun's torque is not
available to this model.

Even if all the above issues are resolved, there is no guar-

antee that one would end up with satellite systems like those of

Jupiter and Saturn. Other issues sucha model has difficulties

coping with include the low densities of Saturnian satellites

other than Titan (especially that of Iapetus), the formation of

Hyperion in resonance, the endogenic activity of the small

moons of Saturn, the mass to distance relationship in the Ura-

nian and inner Saturnian satellites (see Paper II), the location

of the outermost satellite of each planet, the formation of a

fully differentiated Ganymede but only a partially differen-

tiated Callisto, and the sizes, positions and densities of the

Galilean satellites. Using such a model one may well argue

that the compositional gradation among the Galilean satellites

is a consequence of impact (Stevenson et al. 1986). That

is, impacts close to the planet from late arriving high-velocity

planetesimals might preferentially re-accrete rock. However,

this argument is hard to apply to Saturn, where the satellite

density increases fairly systematically out to Titan and then

decreases again for lapetus!

It is possible to argue in favor of a hybrid model in which

most of the mass is derived from "late stage" feeding yet one

starts with satellite seeds sufficiently massive to avoid some of

the issues mentioned above. In that case, it is likely one would

resort to the physical processes described in this and in Paper

II to accrete and retain such seeds long enough for continued

growth to a full size satellite. At this time we do not favor this

alternative. First, it is unlikely that such a model can overcome

all of the objections listed above. Second, the agreement

between the atmospheric envelope mass ratios and satellite

systems mass ratios argues against it. Third, although more

work needs to be done to verify this claim it seems possible

to accrete Callisto partially differentiated without resorting to

the feeding of solids through the gap. As we argued before,

given our model it is still possible (though this may be unlikely

regardless of the model) that particulate matter coupled to the

high specific angular momentum gas flowing through the gap

after giant planet gap-opening contributes a significant fraction

to the mass of moons forming outside the centrifugal radius

of the giant planet, thus lengthening their formation timescale.

However, a starved disk model forms all the regular satellites

out of late arriving material, whereas the angular momentum

of the gas arriving after the giant planet has accreted most of

its mass would take it to orbits outside the centrifugal radius

(considering the torque of the Sun on the gas that flows into

the giant planet).

To close this discussion, we point out that regardless of

the details of such a model, it is likely that it would predict

a partially differentiated state for Titan. Accretion onto Titan

would have occurred even slower, with less energetic impacts,

and at a lower temperature (both of the nebula and the object)

than Callisto's accretion. Furthermore, a starved disk model

would preclude the presence of significant amounts of ammo-

nia in Titan or any other satellite. Therefore, one would expect

a partially differentiated (Callisto-like) Titan.

9 Conclusions

We have used a consistent model for the accretion of regular

satellites of Jupiter, Saturn and Uranus. Though a variety of

accretion scenarios arise out of our model, we argue that this

is not tantamount to special pleading for each satellite; rather,

the various possibilities all derive from the parameter space

available to the model. In our view, the complexity of the

model is justified by the observations.

We investigate a model for giant planet regular satellite for-

mation in which the satellites accrete in the presence of a dense

inner gaseous disk extending out to the planet's centrifugal ra-

dius, and from an extended, low density outer disk extending

out to a fraction of the planetary Hill radius. The accretion

of the satellites takes place at the tall end of the formation of

the giant planet, at a time of heavy Roche-lobe planetesimal

bombardment; however, the bulk of the materials in the satel-

lites is derived from condensables left behind by planetesimal

break-up in the giant planet's extended, collapsing envelope,

from which the circumplanetary gas disk formed. We assume

a "minimum mass" model to estimate the mass of the inner

disk; and in light of the high-Z enhancement in Jupiter and

Saturn, we consider increased solid concentrations by a factor

of 3 - 4. We take the similarity of the reconstituted satellite

mass ratio between Jupiter and Saturn (,-, 3.7) and the ratio of

the atmospheric envelopes of these two planets as an indica-

tion that (a) the same general process applied to both of their

satellite systems, and (b) the amount of material left in the

inner disk is related to amount of gas in the planet's envelope.

Therefore, we use the above ratio to estimate the relative mass

in the gas disks of the two planets. Similarly, the atmospheric

envelope mass ratio between Saturn and Uranus _ 18 corn-
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pareswellwiththeratioofthemassesinthesatellitesystems
ofthesetwoplanets_ 15.Thisleadsustouseaminimum
gasmodelextendingouttoUranus'centrifugalradius(and
nottothepresentlocationofOberon,giventhattheUranian
satellitesprobablymigratedinward)toestimatetheamountof
gaspresentintheUranianinnerdisksubnebula.

Therearethreepossiblemechanismsthatcanleadtothe
formationoftheextendeddisk.Firstisthespin-outscenarioof
Korycanskyet al. (1991). Second, gas viscosity may push gas

out to large distances. Third, the torque exerted by the Sun on

gas flowing through the Roche-lobe at the time of giant planet

gap opening, or, more generally, at end of planetary accretion

may lead to the formation of an extended disk. The first two

mechanisms both rely on dust opacity. In the case of the spin-

out model dust opacity is needed to keep Jupiter's envelope

sufficiently puffed-up to spin-out as it contracts. On the other

hand, gas viscosity may only lead to an extended outer disk if

strong gas turbulence lasts a time comparable to the viscous

timescale far from the planet; this may only happen if dust

keeps the inner gas disk optically thick. Because we expect

the dust opacity to decrease sharply over time as a result of

dust coagulation, we we favor the third possibility, and base our

estimate for the mass of the outer disk on it. To determine the

size of the outer disk, we rely on the locations of the irregular

satellites of the giant planets. Connecting their location to

the size of the disk allows us to explain the lack of irregulars

closer to the planet. With this in mind, we expect that the outer

disks of Jupiter and Saturn extended out to _ RcochdS, and

contained enough condensables to form Callisto and lapetus

respectively.

At present, the best candidate mechanism to generate tur-

bulence with a in the range 10-'1 _ 10- 2 is an entropy gradient

in the subnebula leading to a non-barotropic equation of state

(Klahr and Bodenheimer, in press). Such a model leads to tur-

bulence that is a function of position and time. Post-accretion,

turbulence is likely to die down to o_ values of 10 -6 - 10 -5,

thus allowing the subnebula to cool down. In particular, re-

gions of the disk with temperature close to the background

temperature of the nebula at the location of the primary should

be nearly quiescent, with low gas viscosity and long orbital

decay times. In this regard, we interpret the cut-off in the dis-

tribution of irregular satellites of Jupiter and Saturn as strongly

suggestive of a sharp decrease in the outer disk gas density in

the neighborhood of 1LochJS. Such a strong density gra-

dient is consistent with laminar gas flow. On the other end,

because the inner disk of the giant planets (except perhaps

Uranus) is non-isothermal both radially and vertically, weak

turbulence is expected there for as long as the gas remains

optically thick (with _ > 104 g cm-2). Such a turbulence

model may remove gas more efficiently close to the planet;

and it may have difficulty lowering the gas surface density

below the value given above (unless small dust particles are

kept around for viscous timescales, despite the comparatively

short coagulation timescales), perhaps leading to a flat surface

density profile.

Given our subnebula parameters, we show that gas drag

dominates migration for particles < 500 - 1000 km, and the

tidal torque of the gas disk is stronger for larger objects. In

the inner disk, dust and rubble are swept up fast enough to

form a 1000 km satellite embryo in < 103 years for Jupiter

and < 104 years for Saturn as long as some settling of the

particle layer takes place. This timescale may be sufficiently

short for the embryo to survive the effects of gas drag and

planetesimal bombardment from the Roche-lobe. Once the

embryo reaches _ 1000 km size it will capture a signifi-

cant fraction of the satellitesimals that migrate inwards into its

feeding zone due to gas drag, making it likely that most of the

condensible mass in the disk ends up in the satellite system

instead of being lost to the planet. Thus, roughly speaking,

a "minimum mass" model may in fact apply to the formation

of satellites. We expect that satellites stopped growing when

either the disk ran out of accretable materials, or when an outer

embryo choked off the growth of proto-satellites inside of its

orbit. The latter possibility may explain the sequence of sizes

of the Galilean satellites, and the observation that the largest

satellites of both Saturn and Jupiter occur just inside the cen-

trifugal radius. While it is possible that for the largest satellites

partial vaporization of infalling satellitesimals and subnebula

gap opening may have reduced the mass accretion rate, it is

unlikely that these processes were able to terminate accretion

altogether. Nevertheless, for the largest satellites (Ganymede,

Titan and Callisto) gap-opening may have significantly low-

ered the accretion efficiency of inwardly drifting satellitesimals

(a greater proportion of such objects may "horseshoe" past a

large satellite surrounded by a gap). Hence the similarity in

their masses may be connected with this process. If so, their

final masses may not be determined solely by the total amount

of mass present outside their orbit and inside the orbit of its

outer neighbor. Perhaps more likely, both factors may came

into play.

Though our model leads in some cases to long formation

times for full-grown satellites, in all such cases the embryos

that led to the satellite formed quickly, and the long forma-

tion timescale is derived from the slow accretion of dispersed

embryos. Our model forms Ganymede in Jupiter's inner disk

in 103 - 104 years at a temperature of _ 250 K, and Titan

in Saturn's inner disk in 104 - 105 years at a temperature of

--, 100 K. The upper bound is computed by estimating the size

of the region from which a satellite draws materials, and then

computing the timescale for embryos to drag that distance and

form the satellite. The lower bound is obtained by assuming

that once an embryo grows to a size that it can capture most

of the satellitesimals that drift into its feeding zone, its growth

accelerates. In the case of Titan and Ganymede, we speculate

that this accretion took place fast enough that these satellites

avoided significant inward migration. Thus, we would expect

that the embryo which led to their formation originated from

the neighborhood of the centrifugal radius of each of their

planets. Though the lower gas surface gas density in Saturn's

system probably led to a longer formation timescale for Titan,

our model predicts that this satellite accreted too fast to avoid

runaway differentiation.

In the outer disk, the low temperature of the gas (,_ 130 K
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for Jupiter and _ 90 K for Saturn) leads us to expect that it is

characterized by weak turbulence driven only by the vertically

thin particle layer shear (Cuzzi et al. 1993). Therefore, despite

the longer dynamical times and low solid surface densities, the

timescale for the formation of embryos by dust and rubble

sweep up and by drift augmented accretion of satellitesimals

is about 100 times faster than the orbital decay timescales

for such embryos. Consequently, we expect embryos to form

quickly until the disk becomes depleted of dust and rubble.

Continued growth of similarly sized embryos will take place

at the Safronov timescale and lead to sizes of several hundred

kilometers in a timescale comparable to their drift times. Once

these embryos reach the position of proto-Callisto most of them

will be accreted by it. We calculate characteristic embryo sizes

by comparing the drift times of satellitesimals across twice the

embryo's feeding zone to the synodic time of two objects sep-

arated by half that distance. In our model Callisto's accretion

timescale is set by the inward drift of embryos 300 - 500 km

(with the smaller embryo size the result of the longer satellites-

imal drift time of a model with 4 times greater concentration of

solids) from as far away as ,-, 150Rj (compared with ,,_ 23Rj

for Ganymede). Similarly, the timescale for the accretion of

Iapetus is set by the drift of embryos from as far as ,,_ 200Rs.
We also show that the Safronov timescale to build embryos

< 500 km at distances ,-, 100Rj is about 106 years. Fur-
thermore, the orbital decay time of such an object from that

distance is also ,,, 106 years (though the timescale depends on

the concentration of solids in the disk).

A formation timescale of _ 106 years for Callisto (and

106 - 107 years for lapetus) may be slow enough to lead to

a partially differentiated state for Callisto (lapetus is made of

ice) consistent with the two layer model advanced by Anderson
et al. (2001), which has a clean ice layer ,_ 300 km overlying
a mixed ice and rock-metal interior. It must be stressed that

although this model leads to large embryos hitting the proto-

satellite, they do so at the escape velocity of the proto-satellite

(as supposed to the hypervelocity impacts that would result
from Roche-lobe objects). In this energy regime, crater di-

ameters are roughly _ 3r_, so that the penetration depth of

such objects are likely on the order of their radius, with ex-

cavation depths being even smaller (Melosh 1989). Thus, a

single collision may not lead to runaway differentiation of the

proto-satellite. While impacts with embryos of hundreds of
kilometers will bury heat, it will also overturn the upper layers

of a satellite, perhaps allowing it to cool faster. Furthermore,

larger solid concentrations will decrease the size of the em-

bryos while lengthening the timescale of formation. It is also

possible (though probably unlikely given lapetus' low density,

and the low solid content expected to couple to the gas at late

times) that particulate matter coupled to high specific angu-

lar momentum gas flowing through the gap after giant planet

gap-opening lengthens the timescale of formation of regular

satellites outside the centrifugal radius. Still, more work needs

to be done to check whether our model can realistically lead

to a partially differentiated Callisto.

Callisto could then be said to be the result of slowly as-

sembling hundreds to thousands of "cold" embryos. This may

account for the preferential retention of ices more volatile than

water in Callisto than in Ganymede. This also means that

(possibly unlike Ganymede and Titan) both Callisto and Iape-

tus are likely to have migrated large distances (see Paper II for

an explanation of their present day locations). Lewis (1974)

hypothesized that lower formation temperatures for Callisto

than for Ganymede would likely have led to the accretion of

solid ammonia hydrate in Callisto. Our model indeed has Cal-

listo forming cold; however, it does so in a region of the disk

disconnected from the inner, optically thick region. Therefore,

we expect Callisto bulk composition to adhere closely to solar

mixtures. In the case of lapetus, we speculate that the bulk of

its material was derived by the ablation of ices from planetesi-

mals that hit Saturn's envelope and/or water enriched material

as a result of dust settling in the envelope, which might explain

this satellite's low density.

Given our model, Titan's methane atmosphere may still

be the result of the condensation of methane clathrate hydrate

(Lewis 1974). Another interesting if somewhat speculative

possibility of our model is that Titan out-gassed its atmosphere

as a result of a collision with an Iapetus-sized object. Given

its location, it is unlikely that Iapetus collected all the material

in Saturn's outer disk. Therefore, large embryos could have

formed outside the centrifugal radius which ultimately ended

up colliding with Titan. lapetus itself may owe its dark, reddish
material to the condensation of methane in the subnebula.

Since our model has an optically thick inner disk, it is

also possible that ammonia is responsible for ancient volcanic

plains in Tethys and Dione. In the inner disk one might expect

production and outward transport of ammonia. However, the

outer regions of the disk would not be affected. The lack of

any resurfacing in Callisto and its presence in the much smaller
Dione seems to indicate that Callisto lacks ammonia but Dione

has it. Given our model, it is possible that ammonia is respon-

sible for the ancient volcanic plains in Tethys and Dione. But

it must be pointed out that Rhea appears inert. It might be

that Rhea received less ammonia than Dione by virtue of its

location. On the other hand, it is also possible that ammonia

fails to resurface larger satellites. There is also the issue of the
D/H ratio for the satellites. While more work has to be done in

this respect, to the extent that neither Callisto nor Iapetus was

coupled to a thick subnebula one might expect an enhanced

D/H ratio for these satellites with respect to Ganymede and Ti-

tan. However, given lapetus location Titan probably received

a substantial amount of material from the outer disk in the late

stages of its accretion. Hence it may not be surprising that

the measured D/H ratio in Titan's atmosphere is comparable to

that of comet Halley. It is unclear whether Ganymede's D/H

ratio can be expected to be substantially lower than that of Cal-

listo, but the issue merits further study. Finally, we point out

that whereas Callisto is likely to have accreted homogeneously

(its accretion time is longer than the disk cooling time at its

location) the same may not be true for Ganymede or Titan. It

must be stressed that despite the different predictions that our

model makes for satellites forming in the inner and outer disks,

the basic processes that led to their formation are essentially

the same.
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BecauseSaturn'sdiskischaracterizedbylongerdynam-
icaltimesandhaslessgasspreadoutoveralargerdistance
than Jupiter's disk, our model leads to significantly longer ac-

cretion timescales for the satellites of Saturn. It is possible

that no large satellites formed inside of Titan because the em-

bryo formation timescale _ 104 years made them vulnerable

to hypervelocity impacts close to the planet (but see Paper

II for alternative explanations based on satellite migration).

This mechanism may work because characteristic embryos in

Saturn's disk are small (< 1000 km).

We have seen that our model has Ganymede and Titan

forming in the inner disk, and Callisto and Iapetus in the outer

disk. It also has Hyperion forming in the transition region.

This is significant because it fits well with the formation model

of Lee and Peale (2000), which has Hyperion captured into res-

onance by proto-Titan in the presence of a strong gas density

gradient. Given our subnebula parameters, we show that Ti-

tan satisfies the criterion for gas drag capture of kilometer

sized satellitesimals into resonance, whereas Ganymede does

not. This may explain the presence of Hyperion at Titan's 4:3

resonance location, and the absence of a corresponding small

satellite in resonance with Ganymede (though such an object

may have formed in an unstable orbit and been subsequently

scattered, or been lost due to collisions). Furthermore, Callisto

may have formed in a region of the disk where the gas drag

was weak enough that typical satellitesimai eccentricities were

larger than the critical value such that resonance capture prob-

ability becomes small, leaving the transition region between

the outer and inner disks of the giant planets as the only place

where resonant capture is likely. If so, this may place signif-

icant constraints on the environment that gave rise to regular

satellites of giant planets. This issue merits further work.

We extend this model to the satellites of Uranus. Though

for Uranus the mass for the inner or outer disks may not have

been enough to form a Titan or an lapetus, we find remarkable

similarities between the Uranian satellite system and the inner
Saturnian satellites. We defer further discussion of this issue

to Paper I1. Here we simply point out that we interpret the

gap between the centrifugal radius and the outermost Uranian

regular satellite as suggestive of substantial satellite migration

inwards. In the outer disk, our model ties the absence of a

regular satellite outside the centrifugal radius to the presence

of irregulars close to the centrifugal radius (compared to the

irregulars of Jupiter and Saturn).

The question of the silicate fraction of the satellites is

likely to be quite complicated with many thorny issues which

are beyond the scope of this paper (see McKinnon et al. 1997

for a review). Here we simply point out that our model seems to

fit better with the view that most of the regular satellites of giant

planets are not water deprived but water enriched. By this we

mean that regular satellites forming in regions of the subnebula

where water condensation had taken place probably had more

water available to them than given by solar mixtures, even if

they lost some of that water in the process of accretion. As has

been done before (e.g. Podolak et al. 1993), we note that all the

regular satellites of giant planets with the exception of 1o and

Europa have silicate fractions well below those of Triton, Pluto

and Charon (though at least Triton may have lost a significant

amount of water during its history). There are at least four

mechanisms that can lead to water enrichment, and we suggest

that their interplay may have the best chance of explaining the

observed silicate fractions of the regular satellites of the giant

planets. First, ice ablation of planetesimals hitting the envelope

of the giant planet and/or dust settling can add water content

to satellites forming far from the planet (this may have played

a major role in the case of Iapetus and to a lesser extent in the

case of Callisto). Second, more water may be available under

nebular conditions applicable to satellites forming in the inner

disk (this may apply to Ganymede, Titan and to a lesser degree

the Uranian satellites). Third, non-homogeneous accretion

may lead to selective loss of silicates (this may be applicable

to the inner Saturnian satellites and perhaps to Miranda; see

Paper II). However, much more work will have to be done to

check this possibility.

We briefly consider the alternative conceptual model that

Callisto's timescale was set by the timescale over which solids

were fed into the system, and that all the regular satellites of

Jupiter and Saturn formed from a "starved disk". We conclude

that this scenario faces significant hurdles. Nevertheless, the

issue needs to be settled. We propose that a good test of this

alternative model is whether or not Titan is differentiated. Our

model leads us to the conclusion that while Titan took consid-

erably longer to form than Ganymede, it still formed in a short

timescale (< 105 years), making it very likely that it is fully

differentiated. On the other hand, the "starved disk" model im-

plies a long accretion time for Titan with lower temperatures

and slower impacts (compared to Callisto), and small quanti-

ties of NHa present. While it may be possible to avoid this

conclusion by fine tuning parameters such as the size of the

impactors, we suggest that such a model would predict a par-

tially differentiated (Callisto-like) Titan. The Cassini mission

is likely to resolve this issue conclusively.
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Appendix A: Velocity Dispersion in the Outer Disk

Because of the effects of gas drag, we expect the outer

disk will be populated by similar-sized embryos; smaller ob-

jects would be quickly incorporated into larger objects by drift

augmented accretion. Given this, we ask what is the velocity

dispersion of these objects. The mean eccentricities e and in-

clinations i are determined by the balance between excitation

due to mutual encounters and damping due to gas drag and/or

collisions. Using the average time rate of change of e and i
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determined by Adachi et al. 1976 (their equation 4.15), as well

as their mean-square variations (Hayashi et al. 1977, equation

5.24), we have e ,-, 1.9i ,,, 0.83(rg/rcg)l/s(1.1 + Tgl2eTc) -1/5 (A9)

de 2 0.47 1

dt Tcg iv_ + e 2
2eS (0.77e eS+ 0.64i + 7/) - -- = 0
_'9 rc

(A1)

-- = i s i sdi 2 0.094 1 --(0.77e+ 0.85i +_7) - -- = 0
dt Tog iv/_ + e _ rg rc

(A2)

where the characteristic timescales due to gas 7-a, physical

collisions r_, and gravitational collisions r_ 9 are given by

16psrpca_ (A3)
rg = 3CDGMpE

1

r¢- x/2nau (A4)

3M_ (A5)
v_g = 36.647rSaS12_p_rp a lnA_

where n is the number density of particles, a = 47rr_(1 +0) is

the cross-section with O s 2= v,s,/2u the Safranov parameter,

u s = (e s + is> v_/2 is the mean-square velocity, and

A_ (eS+iS) MP (e2+iS)Mpu-- s = (A6)
4am, 87ra_,r_

with the mean free path s = 2p_rvu/3f_Zs. We find solutions

for the cases in which interactions are balanced by (a) gravita-

tional collisions, (b) physical collisions, and (c) both physical

and gravitational collisions. For these solutions we assume

that r/<< e, i, but we note that this may be only marginally

true. The first case has already been found by Hayashi et al.

and is given by

78(_-,/ )_/_e= 1.7i=0. T_a (AS)

We find that for a 500 km satellitesimal at a = 150 Rj with a

density ofp_ = 1.5 g cm -3, e ,_ 0.17 and i _ 0.1. For case

(b) in which we balance interactions with physical collisions

only, we also find a simple relationship

e = V_i = 0.99(T_/Tcg) '/4 (A8)

Here for the same 500 km object at a = 150 Rj, we find

that e ,'_ 0.23 and i _-, 0.1. However, for case (c) we can-

not decouple the characteristic times from equations (A 1) and

(A2) in order to find a simple relationship between e and i.

We find that a good estimate that encompasses the sizes of
satellitesimals we are interested in for the outer disk to be

0.4

In tiffs case for a 500 km object at a = 150 Rj, we find that
e ,--, 0.16 andi _ 0.084.
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Figure 7: Safronovparameter plottedversusbothsatellites-

imal mass and radius(assuming ps = 1.5 g cm -s) forthree

casesin the outer disk. Mutual encounters are balanced

by physicalcollisions(dashed curve),gravitationalcollisions

(dottedcurve),and both gravitationaland physicalcollisions

(solidcurve).For thiswide range of satellitesimalsizes,the

O < 1 indicatinggravitationalfocusingisunimportant.

In all three cases, we must iterate to find solutions for e

and i, and the focusing factor given by Fg = 1 + O. We have

solved these three cases for a range of satellitesimal mass at

a = 150 Rj and plotted them versus the Safranov parameter

in Figure 7. The satellitesimals are assumed to have a density

of p, = 1.5 g cm -3. The dashed line represents the solution

to case (a). The Safranov parameter actually decreases as one

approaches higher masses. This is due to the fact that there

are fewer physical collisions for larger particles. The dotted

line corresponds to case (b) where we balance the pumping of

e and i with gravitational collisions. Here O increases as one

approaches larger masses. Likewise case (c), which combines

both effects, corresponds to the solid line. Physical collisions

dominate for the smaller masses, while gas drag wins out for

larger particles as the number of physical collisions decrease.

For all cases we find O < 1 indicating that over this range

of satellitesimal sizes the focusing is weak. Interestingly, the

ratio of drag time ra_, to collision time 7-_can be written as

(_.) (13_0TK--) 3/s ( 15ORj ) 3/s--_6 -- . (A10)
7-c
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Noticethatthis is independent of particle size. Also note

that since eli ._ constant this is independent of the veloc-

ity dispersion, Likewise, the Safronov accretion timescale is

independent of velocity dispersion for Fg _ 1.

Appendix B: Collisional Breakup of Satellitesimals

Sufficiently large impacts, even occurring at velocities

close to the escape velocity of the target, have the potential

for fragmentation of the original body. The outcome of such

impacts are most often characterized by a dimensionless pa-
rameter

f Ed,_, ,_ b (B1)f,
=A\ Ep ]

where Edis_ is the "disruption energy" of the target, Ep is the

impact energy imparted by the projectile, A is a constant of

order unity, and b ,,_ 0.8 - 1.25 for various target materials

(e.g. Fujiwara et al. 1977; Meh)sh 1989; Davis et al. 1999).

The parameter fl is the ratio between the mass of the largest

fragment due to the collision, and the mass of the original

body. For fl _- 1, the collision leads to erosion of the target,

for fl -----0.5 the target has suffered a "significant breakup"

(thresholdof catastrophic disruption), and fl << 1 indicates a

catastrophic breakup of the target into small fragments (Melosh

1989). The disruption energy of the target is generally taken to

be a function of the target's strength Y only, however for large

objects one must consider the self-gravity effects of the target,

which we may express for spherical objects with uniform mass

as

4 al 4 .-,22]Ed,sr "_ -_rr8 .oY + _czzct, p_rsj (B2)

where c_ and c2 are dimensionless constants of order unity.

The crossover size such that the strength of the target is on

the same order as its gravitational binding energy has been

found to range from several 100 km radii to as small as a

few 100 m (Ahrens and Love 1996). Assuming cl ---- c2 =

3/5 (gravitational binding energy coefficient) in equation (B2),

one finds that the transition size may be expressed as r,

(3Y/4_rGp_) 1/2, which yields objects tens of kilometers in

size for strengths in the MPa range.

As an example, we consider the collision of two equally-

sized objects (r_ > 100 km) in the outer disk assuming that

target strength is unimportant. The energy imparted into the

target is taken to be half of the total collisional kinetic energy

Ep = mpv_(1 + 20)/4 _ rnpv_¢/2 where we assume the

remaining half of the energy remains in the projectile. The

Safronov parameter is taken to be O = 0.5 as a representative

value (see Figure 7). We find that fl "" 0.5 - 0.7 which sat-

isfies the criterion for partial disruption of the the target. This

suggests that collisional disruption may have played an im-

portant role in determining the accretion timescale for satellite

embryos in the outer disk.
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